English
Karnataka Board PUCPUC Science Class 11

Following Figure Shows Three Transparent Media of Refractive Indices μ 1 , μ 2 and μ 3 . a Point Object O is Placed in the Medium μ 2 . If the Entire Medium on the Right of the Spherical - Physics

Advertisements
Advertisements

Question

Following figure  shows three transparent media of refractive indices \[\mu_1 ,    \mu_2   \text{ and }  \mu_3\].  A point object O is placed in the medium \[\mu_2\].  If the entire medium on the right of the spherical surface has refractive index  \[\mu_3\], the image forms at O". In the situation shown,

Options

  • the image forms between O' and O"

  • the image forms to the left of O'

  • the image forms to the right of O"

  • two images form, one at O' and the other at O".

MCQ

Solution

 two images form, one at O' and the other at O"

Light will be refracted differently in both mediums on the right side. Thus, two images will be formed, one at O' due to refraction from medium μ1 and another at O" due to refraction from medium μ3.μ1

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Geometrical Optics - MCQ [Page 411]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 18 Geometrical Optics
MCQ | Q 7 | Page 411

RELATED QUESTIONS

A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.


In image formation from spherical mirrors, only paraxial rays are considered because they


A man uses a concave mirror for shaving. He keeps his face at a distance of 25 cm from the mirror and gets an image which is 1.4 times enlarged. Find the focal length of the mirror.


Light is incident from glass (μ = 1.5) to air. Sketch the variation of the angle of deviation δ with the angle of incident i for 0 < i < 90°.


A diverging lens of focal length 20 cm and a converging mirror of focal length 10 cm are placed coaxially at a separation of 5 cm. Where should an object be placed so that a real image is formed at the object itself?


A converging lens and a diverging mirror are placed at a separation of 15 cm. The focal length of the lens is 25 cm and that of the mirror is 40 cm. Where should a point source be placed between the lens and the mirror so that the light, after getting reflected by the mirror and then getting transmitted by the lens, comes out parallel to the principal axis?


Consider the situation shown in figure. The elevator is going up with an acceleration of 2.00 m s−2 and the focal length of the mirror is 12.0 cm. All the surfaces are smooth and the pulley is light. The mass-pulley system is released from rest (with respect to the elevator) at t = 0 when the distance of B from the mirror is 42.0 cm. Find the distance between the image of the block B and the mirror at t = 0.200 s. Take g = 10 m s−2.


Two thin lenses having optical powers of -10D and+ 6D are placed in contact with each other. The focal length of the combination is: 


Answer the following question.
Three lenses of focal length +10 cm, —10 cm and +30 cm are arranged coaxially as in the figure given below. Find the position of the final image formed by the combination. 


Answer the following question.
With the help of a ray diagram, obtain the relation between its focal length and radius of curvature.


According to Cartesian sign convention, all distances are measured from the _______.


According to the mirror equation, ______.


The focal length of a convex lens made of glass of refractive index (1.5) is 20 cm.

What will be its new focal length when placed in a medium of refractive index 1.25?

Is focal length positive or negative? What does it signify?


The intensity of a point source of light, S, placed at a distance d in front of a screen A, is I0 at the center of the screen. Find the light intensity at the center of the screen if a completely reflecting plane mirror M is placed at a distance d behind the source, as shown in the figure.


The direction of ray of light incident on a concave mirror is shown by PQ while directions in which the ray would travel after reflection is shown by four rays marked 1, 2, 3 and 4 (figure). Which of the four rays correctly shows the direction of reflected ray?


(i) Consider a thin lens placed between a source (S) and an observer (O) (Figure). Let the thickness of the lens vary as `w(b) = w_0 - b^2/α`, where b is the verticle distance from the pole. `w_0` is a constant. Using Fermat’s principle i.e. the time of transit for a ray between the source and observer is an extremum, find the condition that all paraxial rays starting from the source will converge at a point O on the axis. Find the focal length.

(ii) A gravitational lens may be assumed to have a varying width of the form

`w(b) = k_1ln(k_2/b) b_("min") < b < b_("max")`

= `k_1ln (K_2/b_("min")) b < b_("min")`

Show that an observer will see an image of a point object as a ring about the center of the lens with an angular radius

`β = sqrt((n - 1)k_1 u/v)/(u + v)`


A spherical mirror is obtained as shown in the figure from a hollow glass sphere. if an object is positioned in front of the mirror, what will be the nature and magnification of the image of the object? (Figure drawn as schematic and not to scale)


Parallel rays striking a spherical mirror far from the optic axis are focussed at a different point than are rays near the axis thereby the focus moves toward the mirror as the parallel rays move toward the outer edge of the mirror. What value of incidence angle θ produces a 2% change in the location of the focus, compared to the location for θ very close to zero?


Why does a car driver use a convex mirror as a rear-view mirror?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×