English

Formulate the following problems as a pair of equations, and hence find their solutions: Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately. - Mathematics

Advertisements
Advertisements

Question

Formulate the following problems as a pair of equations, and hence find their solutions:

Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.

Solution

Let the speed of train and bus be u km/h and v km/h respectively.

According to the given information,

`60/u + 240/v = 4 ... (i)`

`100/u + 200/v = 25/6 ... (ii)`

Putting `1/u = p ` in the equations, we get

60p + 240q = 4 ... (iii)

100p + 200q = 25/6

600p + 1200q = 25 ... (iv)

Multiplying equation (iii) by 10, we get

600p + 2400q = 40 .... (v)

Subtracting equation (iv) from (v), we get1200q = 15

`q = 15/200 = 1/80 ... (vi)`

Putting equation (iii), we get

60p + 3 = 4

60p = 1

p = 1/60

`p = 1/u = 1/60 `

u = 60 and v = 80

Hence, speed of train = 60 km/h and speed of bus = 80 km/h.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.6 [Page 67]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.6 | Q 2.3 | Page 67

RELATED QUESTIONS

Solve the following systems of equations

(i)`\frac{15}{u} + \frac{2}{v} = 17`

`\frac{1}{u} + \frac{1}{v} = \frac{36}{5}`

(ii) ` \frac{11}{v} – \frac{7}{u} = 1`

`\frac{9}{v} + \frac{4}{u} = 6`


Formulate the following problems as a pair of equations, and hence find their solutions:

Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current


In a ΔABC, ∠C = 3 ∠B = 2 (∠A + ∠B). Find the three angles.


Solve the following pair of linear equations.

152x − 378y = − 74

− 378x + 152y = − 604


On selling a T.V. at 5% gain and a fridge at 10% gain, a shopkeeper gains Rs 2000. But if he sells the T.V. at 10% gain the fridge at 5% loss. He gains Rs 1500 on the transaction. Find the actual prices of T.V. and fridge.


The sum of a two digit number and the number obtained by reversing the order of its digits is 99. If the digits differ by 3, find the number.


A two-digit number is 4 times the sum of its digits and twice the product of the digits. Find the number.


A fraction becomes 1/3 if 1 is subtracted from both its numerator and denominator. It 1 is added to both the numerator and denominator, it becomes 1/2. Find the fraction.


Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is `x/y`

If 3 is added to the denominator and 2 is subtracted from the numerator, the fraction becomes `1/4`. Thus, we have

`(x-2)/(y+3)=1/4`

`⇒ 4(x-2)=y+3`

`⇒ 4x-8=y+3`

`⇒ 4x-y-11=0`

If 6 is added to the numerator and the denominator is multiplied by 3, the fraction becomes `2/3`. Thus, we have

`(x+6)/(3y)=2/3`

`⇒ 3(x+6)=6y`

`⇒ 3x +18 =6y`

`⇒ 3x-6y+18=0`

`⇒ 3(x-2y+6)=0`

`⇒ x-3y+6=0`

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

`x/((-1)xx6-(-2)xx(-11))=(-y)/(4xx6-1xx(-11))=1/(4xx(-2)-1xx(-1))`

`⇒ x/(-6-22)=-y/(24+11)=1/(-8+1)`

`⇒ x/-28=-y/35=1/-7`

`⇒ x= 28/7,y=35/7`

`⇒ x= 4,y=5`

Hence, the fraction is`4/5`


The sum of the numerator and denominator of a fraction is 4 more than twice the numerator. If the numerator and denominator are increased by 3, they are in the ratio 2 : 3. Determine the fraction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×