English

Four Alternative Answers for the Following Question is Given. Choose the Correct Alternative. Length of a Tangent Segment Drawn from a Point Which is at a Distance - Geometry Mathematics 2

Advertisements
Advertisements

Question

Four alternative answers for the following question is given. Choose the correct alternative.
 Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is 12 cm, find the diameter of the circle.

Options

  • 25 cm 

  • 24 cm 

  • 7 cm 

  • 14 cm 

MCQ

Solution

Let O be the centre of the circle and AB be the tangent segment drawn from an external point A touching the circle at B.

The tangent at any point of a circle is perpendicular to the radius through the point of contact.
∴ ∠ABO = 90º
In right ∆ABO,
\[{OA}^2 = {AB}^2 + {OB}^2 \]
\[ \Rightarrow OB = \sqrt{{OA}^2 - {AB}^2}\]
\[ \Rightarrow OB = \sqrt{\left( 12 . 5 \right)^2 - \left( 12 \right)^2}\]
\[ \Rightarrow OB = \sqrt{156 . 25 - 144}\]
\[ \Rightarrow OB = \sqrt{12 . 25} = 3 . 5 cm\]
Radius of the circle = OB = 3.5 cm
∴ Diameter of the circle = 2 × Radius of the circle = 2 × 3.5 = 7 cm
Hence, the correct answer is 7 cm .

shaalaa.com
Tangent Segment Theorem
  Is there an error in this question or solution?
Chapter 3: Circle - Problem Set 3 [Page 83]

APPEARS IN

RELATED QUESTIONS

In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

  1. What is the length of each tangent segment?
  2. What is the measure of ∠MRO?
  3. What is the measure of ∠MRN?


Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.


In the given figure, the circles with centres A and B touch each other at E. Line l is a common tangent which touches the circles at C and D respectively. Find the length of seg CD if the radii of the circles are 4 cm, 6 cm. 


In the given figure, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DE × GE = 4r2


Four alternative answers for the following question is given. Choose the correct alternative.

 Seg XZ is a diameter of a circle. Point Y lies in its interior. How many of the following statements are true ? (i) It is not possible that ∠XYZ is an acute angle. (ii) ∠XYZ can’t be a right angle. (iii) ∠XYZ is an obtuse angle. (iv) Can’t make a definite statement for measure of ∠XYZ.


In the given figure, O is the centre of the circle. Seg AB, seg AC are tangent segments. Radius of the circle is r and l(AB) = r, Prove that ▢ABOC is a square. 

Proof: Draw segment OB and OC.

l(AB) = r      ......[Given] (I)

AB = AC    ......[`square`] (II)

But OB = OC = r    ......[`square`] (III)

From (i), (ii) and (iii)

AB = `square` = OB = OC = r

∴ Quadrilateral ABOC is `square`

Similarly, ∠OBA = `square`      ......[Tangent Theorem]

If one angle of `square` is right angle, then it is a square.

∴ Quadrilateral ABOC is a square.


In the following figure ‘O’ is the centre of the circle.

∠AOB = 1100, m(arc AC) = 450.

Use the information and fill in the boxes with proper numbers.

(i) m(arcAXB) =

(ii)m(arcCAB) =
(iv)∠COB =

(iv)m(arcAYB) =


Prove the following theorem:

Tangent segments drawn from an external point to the circle are congruent.


Length of a tangent segment drawn from a point which is at a distance 15 cm from the centre of a circle is 12 cm, find the diameter of the circle?


Tangent segments drawn from an external point to a circle are congruent, prove this theorem. Complete the following activity.


Given: `square`

To Prove: `square`

Proof: Draw radius AP and radius AQ and complete the following proof of the theorem.

In ∆PAD and ∆QAD,

seg PA ≅ `square`      .....[Radii of the same circle]

seg AD ≅ seg AD    ......[`square`]

∠APD ≅ ∠AQD = 90°     .....[Tangent theorem]

∴ ∆PAD ≅ ∆QAD    ....[`square`]

∴ seg DP ≅ seg DQ  .....[`square`]


In the adjoining figure, O is the center of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

(i) What is the length of each tangent segment?

(ii) What is the measure of ∠MRO?

(iii) What is the measure of ∠MRN?


In the adjoining figure circle with Centre, Q touches the sides of ∠MPN at M and N. If ∠MPN = 40°, find measure of ∠MQN.


If AB and CD are the common tangents in the circles of two unequal (different) radii, then show that seg AB ≅ seg CD.


Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.


Proof: In ∆RMO and ∆RNO,

∠RMO ≅ ∠RNO = 90°   ......[`square`]

hypt OR ≅ hypt OR    ......[`square`]

seg OM ≅ seg `square`    ......[Radii of the same circle]

∴ ∆RMO ≅ ∆RNO      ......[`square`]

∠MOR ≅ ∠NOR

Similairy ∠MRO ≅ `square`    ......[`square`]


Prove that, tangent segments drawn from an external point to the circle are congruent.


In a parallelogram ABCD, ∠B = 105°. Determine the measure of ∠A and ∠D.


In the following figure, XY = 10 cm and LT = 4 cm. Find the length of XT.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×