Advertisements
Advertisements
Question
Height (in cm) of 7 boys of a locality are 144 cm, 155 cm, 168 cm, 163 cm, 167 cm, 151 cm and 158 cm. Find their mean height.
Solution
Sum of the values = Sum of heights
= 144 cm + 155 cm + 168 cm + 163 cm + 167 cm + 151 cm + 158 cm = 1106 cm and
Number of values = Number of boys = 7
∴ The mean = `"Sum of heights"/"Number of boys" = 1106/7 = 158` cm
APPEARS IN
RELATED QUESTIONS
The following table gives the heights of plants in centimeter. If the mean height of plants is 60.95 cm; find the value of 'f'.
Height (cm) | 50 | 55 | 58 | 60 | 65 | 70 | 71 |
No. of plants | 2 | 4 | 10 | f | 5 | 4 | 3 |
The following table shows the expenditure of 60 boys on books. Find the mode of their expenditure:
Expenditure (Rs) | No. of students |
20 – 25 | 4 |
25 – 30 | 7 |
30 – 35 | 23 |
35 – 40 | 18 |
40 – 45 | 6 |
45 – 50 | 2 |
Draw a histogram for the following distribution and estimate the mode:
I.Q. Score | 80-100 | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
No. of Students | 6 | 9 | 16 | 13 | 4 | 2 |
Draw a histogram for the following distribution and estimate the mode:
Mangoes | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 |
No. of trees | 10 | 16 | 20 | 14 | 6 | 4 |
The frequency distribution table below shows the height of 50 students of grade 10.
Heights (in cm) | 138 | 139 | 140 | 141 | 142 |
Frequency | 6 | 11 | 16 | 10 | 7 |
Find the median, the upper quartile and the lower quartile of the heights.
The following observations have been arranged in ascending order. If the median of these observations is 58, find the value of x.
24, 27, 43, 48, x - 1, x + 3, 68, 73, 80, 90
Find the median of 1,3,4, 5, 9, 9 and 11
A boy scored the following marks in various class tests during a term, each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12, 16
What is his median marks?
The median of any data lies between the ______ and ______ observations.
An incomplete frequency distribution is given below
Variate | Frequency |
10 – 20 | 12 |
20 – 30 | 30 |
30 – 40 | ? |
40 – 50 | 65 |
50 – 60 | 45 |
60 – 70 | 25 |
70 – 80 | 18 |
Total | 229 |
Median value is 46, the missing frequency is: