Advertisements
Advertisements
Question
Find the mean of: all prime numbers between 20 and 40.
Solution
All prime numbers between 20 and 40 are 23, 29, 31, 37
Sum of these observations = 23+29 + 31 + 37 = 120 .
and, number of their observations = 4
∴ Required mean = `120/4 = 30`
APPEARS IN
RELATED QUESTIONS
Find the median and mode for the set of numbers:
2, 2, 3, 5, 5, 5, 6, 8 and 9
The following table given the weekly of workers in a factory:
Weekly wages (in Rs) | No.of workers |
50-55 | 5 |
55-60 | 20 |
60-65 | 10 |
65-70 | 10 |
70-75 | 9 |
75-80 | 6 |
80-85 | 12 |
85-90 | 8 |
Calcculate: (1)the mean, (2) the model class, (3) th number of workers getting weekly qages below Rs. 80 and (4) the number of workers getting Rs. 65 or more but less than Rs.85 as weekly wages.
The data on the number of patients attending a hospital in a month are given below. Find the average (mean) number of patients attending the hospital in a month by using the shortcut method. Take the assumed mean as 45. Give your answer correct to 2 decimal places.
Number of patients | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Number of Days | 5 | 2 | 7 | 9 | 2 | 5 |
Find the mean of the following frequency distribution :
Class | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
Frequency | 8 | 6 | 12 | 11 | 13 |
The marks of 200 students in a test is given below :
Marks% | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | 80-89 |
No. of Students | 7 | 11 | 20 | 46 | 57 | 37 | 15 | 7 |
Draw an ogive and find
(i) the median
(ii) the number of students who scored more than 35% marks
The marks of 200 students in a test is given below :
Marks% | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | 80-89 |
No. of Students | 7 | 11 | 20 | 46 | 57 | 37 | 15 | 7 |
Draw an ogive and find the number of students who scored more than 35% marks
Find the median of 5, 7, 9, 11, 15, 17, 2, 23 and 19.
Find the median of 80, 48, 66, 61, 75, 52, 45 and 70
Find the mean and the median of: 5, 8, 10, 11,13, 16, 19 and 20
The weekly sale of motor bikes in a showroom for the past 14 weeks given below. 10, 6, 8, 3, 5, 6, 4, 7, 12, 13, 16, 10, 4, 7. Find the median of the data.