Advertisements
Advertisements
Question
If `bb((15a^2 + 4b^2)/( 15a^2 - 4b^2) = 47/7)` then find the value of the following ratio.
`[ b^2 - 2a^2]/[ b^2 + 2a^2]`
Solution 1
`(15a^2 + 4b^2)/( 15a^2 - 4b^2) = 47/7`
Applying componendo and dividendo, we get
`[(15a^2 + 4b^2) + ( 15a^2 - 4b^2)]/[(15a^2 + 4b^2) - ( 15a^2 - 4b^2)] = [47 + 7]/[47-7]`
⇒ `[15a^2 + 4b^2 +15a^2 - 4b^2]/[15a^2 + 4b^2 - 15a^2 + 4b^2]` =`54/40`
⇒ `(30a^2)/(8b^2) = 27/20`
⇒ `a^2/b^2 = (27 xx 8)/( 20 xx 30) = 9/25`
⇒ `a/b = sqrt( 9/25) = 3/5`
`therefore [ b^2 - 2a^2]/[ b^2 + 2a^2]`
Divided by `b^2`
=`[ b^2/b^2 - (2a^2)/b^2]/[ b^2/b^2 + (2a^2)/b^2]`
= `[ 1 - 2 xx 9/25]/[1 + 2 xx 9/25]` ...`( a/b = 3/5 ⇒ a^2/b^2 = 9/25)`
= `[ (25 - 18)/25] /[( 25 + 18)/25] `
=`7/43`
Solution 2
`(15a^2 + 4b^2)/( 15a^2 - 4b^2) = 47/7`
Applying componendo and dividendo, we get
`[(15a^2 + 4b^2) + ( 15a^2 - 4b^2)]/[(15a^2 + 4b^2) - ( 15a^2 - 4b^2)] = [47 + 7]/[47-7]`
⇒ `[15a^2 + 4b^2 +15a^2 - 4b^2]/[15a^2 + 4b^2 - 15a^2 + 4b^2]` =`54/40`
⇒ `(30a^2)/(8b^2) = 27/20`
⇒ `a^2/b^2 = (27 xx 8)/( 20 xx 30) = 9/25`
⇒ `a/b = sqrt( 9/25) = 3/5`
∴ `a^2/b^2=(3)^2/(5)^2` ...(Squaring both sides)
∴ `a^2/b^2=9/25`
∴ `a^2/b^2xx2=9/25xx2` ...(Multiplying both sides by 2)
∴ `(2a^2)/b^2=18/25`
∴ `b^2/(2a^2)=25/18` ...(using Invertendo)
∴ `(b^2+2a^2)/(b^2-2a^2)=(25+18)/(25-18)` ...(using componendo-dividendo)
∴ `(b^2+2a^2)/(b^2-2a^2)=43/7`
∴ `(b^2+2a^2)/(b^2-2a^2)=7/43` ...(using Invertendo)
APPEARS IN
RELATED QUESTIONS
If `bb(a/b = 7/3)` then find the value of the following ratio.
`(5a + 3b)/( 5a - 3b)`
If `bb(a/b = 7/3)` then find the value of the following ratio.
`(2a^2 + 3b^2)/(2a^2 - 3b^2)`
If `bb(a/b = 7/3)` then find the value of the following ratio.
`(a^3 - b^3)/b^3`
If `bb((15a^2 + 4b^2)/( 15a^2 - 4b^2) = 47/7)` then find the value of following ratio.
`a/b`
If `bb((15a^2 + 4b^2)/( 15a^2 - 4b^2) = 47/7)` then find the value of following ratio.
`[ b^3 - 2a^3]/[ b^3 + 2a^3]`
If `(3a + 7b)/( 3a - 7b) = 4/3` then find the value of the ratio `(3a^2 - 7b^2)/(3a^2 + 7b^2)`.
5m - n = 3m + 4n then find the value of the following expression.
`["m"^2 + "n"^2]/["m"^2 - "n"^2]`
5m - n = 3m + 4n then find the value of the following expression.
`(3m + 4n)/(3m - 4n)`
If `bb(a/b = 2/3)` then find the value of the following expression.
`[ 4a + 3b ]/( 3b )`
If `bb(a/b = 2/3)` then find the value of the following expression.
`[5a^2 + 2b^2]/[ 5a^2 - 2b^2]`