Advertisements
Advertisements
Question
If a, b and c are in G.P., prove that : log a, log b and log c are in A.P.
Solution
Here, a, b, c are in G.P.
`=>` b2 = ac
Taking log on both sides, we get
log(b2) = log(ac)
`=>` 2log b = log a + log c
`=>` log b + log b = log a + log c
`=>` log b – log a = log c – log b
`=>` log a, log b and log c are in A.P.
APPEARS IN
RELATED QUESTIONS
The fifth term of a G.P. is 81 and its second term is 24. Find the geometric progression.
The product of 3rd and 8th terms of a G.P. is 243. If its 4th term is 3, find its 7th term.
The fourth term, the seventh term and the last term of a geometric progression are 10, 80 and 2560 respectively. Find its first term, common ratio and number of terms.
Find the seventh term from the end of the series :
`sqrt(2), 2, 2sqrt(2), ........., 32.`
If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0
If a, b, c are in G.P. and a, x, b, y, c are in A.P., prove that `a/x + c/y = 2`
Q 6
Find the sum of G.P. :
`1 - 1/3 + 1/3^2 - 1/3^3 + .........` to n terms.
Find the geometric mean between 14 and `7/32`
Q 7