English

If abababc0findc|a¯|=|b¯|=1, a¯.b¯=0,a¯+b¯+c¯=0¯,find |c¯|. - Mathematics and Statistics

Advertisements
Advertisements

Question

If `|bar"a"| = |bar"b"| = 1,  bar"a".bar"b" = 0, bar"a" + bar"b" + bar"c" = bar"0", "find"  |bar"c"|`.

Sum

Solution

`bar"a" + bar"b" + bar"c" = bar"0"`

∴ `- bar"c" = bar"a" + bar"b"`

Taking dot product of both sides with itself, we get

`(-bar"c").(-bar"c") = (bar"a" + bar"b").(bar"a" + bar"b")`

∴ `|bar"c"|^2 = bar"a".(bar"a" + bar"b") + bar"b".(bar"a" + bar"b")`

`= bar"a".bar"a" + bar"a".bar"b" + bar"b"bar"a" + bar"b"bar"b"`

`= |bar"a"|^2 + 0 + 0 + |bar"b"|^2    ....[bar"a".bar"b" = bar"b".bar"a" = 0]`

= 1 + 1 = 2     .....`[|bar"a"| = |bar"b"| = 1]`

∴ `|bar"c"| = sqrt2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Vectors - Miscellaneous exercise 5 [Page 190]

APPEARS IN

RELATED QUESTIONS

If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]


\[\text{ If } \overrightarrow{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \overrightarrow{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \overrightarrow{a} - 2 \overrightarrow{b} + 4 \overrightarrow{c} \right| .\]

If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{b} = 2 \hat{i} + 4 \hat{j} + 9 \hat{k} ,\]  find a unit vector parallel to \[\overrightarrow{a} + \overrightarrow{b}\].


The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that

 


If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =


Find the vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0. Hence find whether the plane thus obtained contains the line \[\frac{x + 2}{5} = \frac{y - 3}{4} = \frac{z}{5}\] or not.


Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 


The vector `bar"a"` is directed due north and `|bar"a"|` = 24. The vector `bar"b"` is directed due west and `|bar"b"| = 7`. Find `|bar"a" + bar"b"|`.


Find the area of the traingle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).


Express `- hat"i" - 3hat"j" + 4hat"k"` as the linear combination of the vectors `2hat"i" + hat"j" - 4hat"k", 2hat"i" - hat"j" + 3hat"k"` and `3hat"i" + hat"j" - 2hat"k"`


Select the correct option from the given alternatives:

The volume of tetrahedron whose vectices are (1,-6,10), (-1, -3, 7), (5, -1, λ) and (7, -4, 7) is 11 cu units, then the value of λ is


Find the component form of `bar"a"` if it lies in YZ-plane makes 60° with positive Y-axis and `|bar"a"| = 4`.


Two sides of a parallelogram are `3hat"i" + 4hat"j" - 5hat"k"` and  `-2hat"j" + 7hat"k"`. Find the unit vectors parallel to the diagonals.


If `bar"OA" = bar"a" and bar"OB" = bar"b",` then show that the vector along the angle bisector of ∠AOB is given by `bar"d" = lambda(bar"a"/|bar"a"| + bar"b"/|bar"b"|).`


A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.


ABCD is a parallelogram. E, F are the midpoints of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.


Dot product of a vector with vectors `3hat"i" - 5hat"k",  2hat"i" + 7hat"j" and hat"i" + hat"j" + hat"k"` are respectively -1, 6 and 5. Find the vector.


Find a unit vector perpendicular to the plane containing the point (a, 0, 0), (0, b, 0) and (0, 0, c). What is the area of the triangle with these vertices?


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx(bar"b" xx bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a" xx bar"b").(bar"c"xxbar"d")`


For any non-zero vectors a and b, [b a × b a] = ?


a and b are non-collinear vectors. If c = (x - 2)a + b and d = (2x + 1)a - b are collinear vectors, then the value of x = ______.


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.


If the points (–1, –1, 2), (2, m, 5) and (3,11, 6) are collinear, find the value of m.


The angle between the vectors `hat"i" - hat"j"` and `hat"j" - hat"k"` is ______.


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


The unit vector perpendicular to the vectors `hat"i" - hat"j"` and `hat"i" + hat"j"` forming a right handed system is ______.


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `6vec"b"`


The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.


If `|vec"a" + vec"b"| = |vec"a" - vec"b"|`, then the vectors `vec"a"` and `vec"b"` are orthogonal.


If `veca ≠ vec(0), veca.vecb = veca.vecc, veca xx vecb = veca xx vecc`, then show that `vecb = vecc`.


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


The unit vector perpendicular to the vectors `6hati + 2hatj + 3hatk` and `3hati - 6hatj - 2hatk` is


Find `|vecx|` if `(vecx - veca).(vecx + veca)` = 12, where `veca` is a unit vector.


In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×