Advertisements
Advertisements
Question
If mode of a series exceeds its mean by 12, then mode exceeds the median by
Options
4
8
6
10
Solution
Given: Mode − Mean = 12
We know that
Mode = 3Median − 2Mean
∴ Mode − Mean = 3(Median − Mean)
⇒ 12 = 3(Median − Mean)
⇒ Median − Mean = 4 .....(1)
Again,
Mode = 3Median − 2Mean
⇒ 2Mode = 6Median − 4Mean
⇒ Mode − Mean + Mode = 6Median − 5Mean
⇒ 12 + (Mode − Median) = 5(Median − Mean)
⇒12 + (Mode − Median) = 20 [Using (1)]
⇒ Mode − Median = 20 − 12 = 8
Hence, the correct option is (b).
APPEARS IN
RELATED QUESTIONS
The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.
Expenditure (in Rs) | Number of families |
1000 − 1500 | 24 |
1500 − 2000 | 40 |
2000 − 2500 | 33 |
2500 − 3000 | 28 |
3000 − 3500 | 30 |
3500 − 4000 | 22 |
4000 − 4500 | 16 |
4500 − 5000 | 7 |
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
Runs scored | Number of batsmen |
3000 − 4000 | 4 |
4000 − 5000 | 18 |
5000 − 6000 | 9 |
6000 − 7000 | 7 |
7000 − 8000 | 6 |
8000 − 9000 | 3 |
9000 − 10000 | 1 |
10000 − 11000 | 1 |
Find the mode of the data.
Find the mode of the following distribution:
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Frequency | 12 | 35 | 45 | 25 | 13 |
Find the mode of the following distribution:
Class interval |
10 – 14 | 14 – 18 | 18 – 22 | 22 – 26 | 26 – 30 | 30 – 34 | 34 – 38 | 38 – 42 |
Frequency | 8 | 6 | 11 | 20 | 25 | 22 | 10 | 4 |
Given below is the distribution of total household expenditure of 200 manual workers in a city:
Expenditure (in Rs) | 1000 – 1500 | 1500 – 2000 | 2000 – 2500 | 2500 – 3000 | 3000 – 3500 | 3500 – 4000 | 4000 – 4500 | 4500 – 5000 |
Number of manual workers |
24 | 40 | 31 | 28 | 32 | 23 | 17 | 5 |
Find the average expenditure done by maximum number of manual workers.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
Find the mode of the following data.
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 7 | 13 | 14 | 5 | 11 |
The weight of coffee in 70 packets are shown in the following table:
Weight (in g) | Number of packets |
200 – 201 | 12 |
201 – 202 | 26 |
202 – 203 | 20 |
203 – 204 | 9 |
204 – 205 | 2 |
205 – 206 | 1 |
Determine the modal weight.
For the following frequency distribution, find the mode:
Class | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 | 45 – 50 |
Frequency | 12 | 5 | 14 | 8 | 9 |