English

In a Quadrilateral Abcd; Prove That: (I) Ab+ Bc + Cd > Da (Ii) Ab + Bc + Cd + Da > 2ac (Iii) Ab + Bc + Cd + Da > 2bd - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral ABCD; prove that:
(i) AB+ BC + CD > DA
(ii) AB + BC + CD + DA > 2AC
(iii) AB + BC + CD + DA > 2BD

Sum

Solution


Const: Join AC and BD.
(i) In ΔABC,
AB + BC > AC                       ….(i)[ Sum of two sides is greater than the third side ]
In ΔACD,
AC + CD > DA                      ….(ii)[ Sum of two sides is greater than the third side ]

Adding (i) and (ii)
AB + BC + AC + CD > AC + DA
AB + BC + CD > AC + DA - AC
AB + BC + CD > DA               ….(iii)

(ii) In ΔACD,
CD + DA > AC                   ….(iv) [Sum of two sides is greater than the third side]
Adding (i) and (iv)
AB + BC + CD + DA > AC + AC
AB + BC + CD + DA > 2AC

(iii) In ΔABD,
AB + DA > BD                   ….(v)[Sum of two sides is greater than the third side]
In ΔBCD,
BC + CD > BD                   ….(vi)[Sum of two sides is greater than the third side]
Adding (v) and (vi)
AB + DA + BC + CD > BD + BD
AB + DA + BC + CD > 2BD

shaalaa.com
Inequalities in a Triangle - Of All the Lines, that Can Be Drawn to a Given Straight Line from a Given Point Outside It, the Perpendicular is the Shortest.
  Is there an error in this question or solution?
Chapter 11: Inequalities - Exercise 11 [Page 143]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 11 Inequalities
Exercise 11 | Q 10 | Page 143
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×