Advertisements
Advertisements
Question
In Figure, BP bisects ∠ABC and AB = AC. Find x.
Solution
In the figure,
AB = AC, and BP bisects ∠ABC
AP || BC is drawn.
Now ∠PBC = ∠PBA .........(∵ PB is the bisector of ∠ABC)
∵ AP || BC
∴ ∠APB = ∠PBC ............(Alternate angles)
⇒ x = ∠PBC ..................(i)
In Δ ABC, ∠A = 60°
and ∠B = ∠C ...................(∵ AB = AC)
But ∠A + ∠B + ∠C = 180°.....................(Angles of a triangle)
⇒ 60° + ∠B + ∠C = 180°
⇒ 60° + ∠B + ∠B = 180°
⇒ 2 ∠B = 180° − 60° = 120°
∴ ∠B =`(120°)/2=60°`
⇒ `1/2∠"B"=(60°)/2=30°`
⇒ ∠PBC = 30°
∴ From (i),
x = 30°
APPEARS IN
RELATED QUESTIONS
Find the unknown angles in the given figure:
Find the unknown angles in the given figure:
Find the unknown angles in the given figure:
Find the unknown angles in the given figure:
Apply the properties of isosceles and equilateral triangles to find the unknown angles in the given figure:
Apply the properties of isosceles and equilateral triangles to find the unknown angles in the given figure:
In an isosceles triangle, each base angle is four times its vertical angle. Find all the angles of the triangle.
The base angle of an isosceles triangle is 15° more than its vertical angle. Find its each angle.
The vertical angle of an isosceles triangle is three times the sum of its base angles. Find each angle.
In the given figure, BI is the bisector of ∠ABC and Cl is the bisector of ∠ACB. Find ∠BIC.