English

In the Figure, M∠Dbc = 58°. Bd is the Diameter of the Circle. Calculate: M∠Bdc and M∠Bec and M∠Bac - Mathematics

Advertisements
Advertisements

Question

In the figure, m∠DBC = 58°. BD is the diameter of the circle. Calculate:

1) m∠BDC

2) m∠BEC

3) m∠BAC

Solution

1) Given that BD is a diameter of the circle

The angle in a semicircle is a right angle.

∴ ∠BCD = 90°

In ΔBDC, by angle sum property, we have

∠DBC + ∠BCD + ∠BDC = 180°

⇒ 58° + 90° + ∠BDC = 180°

⇒ 148° + ∠BDC = 180°

⇒ ∠BDC = 180° - 148°

⇒ ∠BDC = 32°

2) quadrilateral BECD is a cyclic quadrilateral

⇒ ∠BEC + ∠BCD = 180° (Opposite angles are supplementary)

⇒ ∠BEC + 32° = 180°

⇒ ∠BEC = 148°

3) Angles in the same segment are equal.

⇒ ∠BAC = ∠BDC = 32°

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Calculate the area of the shaded region, if the diameter of the semicircle is equal to 14 cm. Take `pi = 22/7`


ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.

Calculate the value of x, the radius of the inscribed circle.


Two circles intersect at P and Q. Through P diameters PA and PB of the two circles are drawn. Show that the points A, Q and B are collinear.


In the figure, given alongside, AB || CD and O is the centre of the circle. If ∠ADC = 25°; find the angle AEB. Give reasons in support of your answer.


Using ruler and a compass only construct a semi-circle with diameter BC = 7cm. Locate a point A on the circumference of the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral ABCD, such that D is equidistant from AB and BC. Measure ∠ADC and write it down.


In the given figure, AB is a diameter of the circle. Chord ED is parallel to AB and ∠EAB = 63°. Calculate : ∠BCD. 


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°. 

Calculate : ∠DBC 

Also, show that the ΔAOD is an equilateral triangle.


In the figure, ∠DBC = 58°. BD is diameter of the circle.

Calculate:

  1. ∠BDC
  2. ∠BEC
  3. ∠BAC


In the figure given alongside, AD is the diameter of the circle. If ∠ BCD = 130°, Calculate: (i) ∠ DAB (ii) ∠ ADB.


In the given figure AC is the diameter of the circle with centre O. CD is parallel to BE.

∠AOB = 80° and ∠ACE = 20°.

Calculate

  1. ∠BEC
  2. ∠BCD
  3. ∠CED


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×