Advertisements
Advertisements
Question
ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.
Calculate the value of x, the radius of the inscribed circle.
Solution
In ΔABC, ∠B = 90°
OL ⊥ AB, OM ⊥ BC and ON ⊥ AC
LBNO is a square
LB = BN = OL = OM = ON = x
∴ AL = 12 – x
∴ AL = AN = 12 – x
Since ABC is a right triangle
AC2 = AB2 + BC2
`=>` 132 = 122 + BC2
`=>` 169 = 144 + BC2
`=>` BC2 = 25
`=>` BC = 5
∴ MC = 5 – x
But CM = CN
∴ CN = 5 – x
Now, AC = AN + NC
13 = (12 – x) + (5 – x)
13 = 17 – 2x
2x = 4
x = 2 cm
APPEARS IN
RELATED QUESTIONS
In the figure, m∠DBC = 58°. BD is the diameter of the circle. Calculate:
1) m∠BDC
2) m∠BEC
3) m∠BAC
Prove that the parallelogram, inscribed in a circle, is a rectangle.
ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given ∠BED = 65°; calculate :
- ∠DAB,
- ∠BDC.
In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.
Calculate:
- ∠DAB,
- ∠DBA,
- ∠DBC,
- ∠ADC.
Also, show that the ΔAOD is an equilateral triangle.

In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°,
Calculate:
- ∠RPQ,
- ∠STP.
In the given figure, AB is the diameter of a circle with centre O.
If chord AC = chord AD, prove that:
- arc BC = arc DB
- AB is bisector of ∠CAD.
Further, if the length of arc AC is twice the length of arc BC, find:
- ∠BAC
- ∠ABC
In the following figure, AD is the diameter of the circle with centre O. chords AB, BC and CD are equal. If ∠DEF = 110°, Calculate: ∠FAB.
In the given figure, BAD = 65°, ABD = 70°, BDC = 45°.
(i) Prove that AC is a diameter of the circle.
(ii) Find ACB.
In the figure given alongside, AD is the diameter of the circle. If ∠ BCD = 130°, Calculate: (i) ∠ DAB (ii) ∠ ADB.