English

In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°, Calculate: ∠RPQ, ∠STP. - Mathematics

Advertisements
Advertisements

Question

In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°,

Calculate:

  1. ∠RPQ,
  2. ∠STP.

Sum

Solution


Join PR.

i. ∠PRQ = 90°

(Angle in a semicircle)

∴ In right triangle PQR,

∠RPQ = 90° – ∠PQR

= 90° – 58°

= 32°

ii. Also, SR || PQ

∠PRS = ∠RPQ = 32°  (Alternate angles)

In cyclic quadrilateral PRST,

∠STP = 180° – ∠PRS

= 180° – 32°

= 148°

(Pair of opposite angles in a cyclic quadrilateral are supplementary)

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Circles - Exercise 17 (A) [Page 262]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 17 Circles
Exercise 17 (A) | Q 51 | Page 262

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the figure, m∠DBC = 58°. BD is the diameter of the circle. Calculate:

1) m∠BDC

2) m∠BEC

3) m∠BAC


In the given figure, ∠BAD = 65°, ∠ABD = 70°, ∠BDC = 45°

1) Prove that AC is a diameter of the circle.

2) Find ∠ACB


ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given ∠BED = 65°; calculate :

  1. ∠DAB,
  2. ∠BDC.


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.

Calculate:

  1. ∠DAB,
  2. ∠DBA,
  3. ∠DBC,
  4. ∠ADC.

Also, show that the ΔAOD is an equilateral triangle.


Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.


Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.


AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that : AB = 6 × r

In the figure, given below, AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, fins the distance MN between the two chords of lengths 24 cm and 18 cm respectively.


In the following figure, AD is the diameter of the circle with centre O. chords AB, BC and CD are equal. If ∠DEF = 110°, Calculate: ∠FAB.


In the given figure, O is the centre of the circle and ∠PBA = 45°. Calculate the value of ∠PQB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×