English

In the Given Figure, ∠Bad = 65°, ∠Abd = 70°, ∠Bdc = 45° 1) Prove that Ac is a Diameter of the Circle. 2) Find ∠Acb - Mathematics

Advertisements
Advertisements

Question

In the given figure, ∠BAD = 65°, ∠ABD = 70°, ∠BDC = 45°

1) Prove that AC is a diameter of the circle.

2) Find ∠ACB

Solution

1) In ΔABD, ∠DAB + ∠ABD + ∠ADB = 180°
⇒ 65° + 70° + ∠ADB = 180°
⇒ ∠ADB = 180° - 70° - 65° = 45°
Now, ∠ADC = ∠ADB + ∠BDC = 45° + 45° = 90°
⇒ ∠ADC is the angle of semi-circle
So, AC is a diameter of the circle.

2) ∠ACB = ∠ADB (angle subtended by the same segment)

∠ACB = 45°

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the figure, m∠DBC = 58°. BD is the diameter of the circle. Calculate:

1) m∠BDC

2) m∠BEC

3) m∠BAC


ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given ∠BED = 65°; calculate :

  1. ∠DAB,
  2. ∠BDC.


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.

Calculate:

  1. ∠DAB,
  2. ∠DBA,
  3. ∠DBC,
  4. ∠ADC.

Also, show that the ΔAOD is an equilateral triangle.


In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°,

Calculate:

  1. ∠RPQ,
  2. ∠STP.


In the following figure, AD is the diameter of the circle with centre O. Chords AB, BC and CD are equal. If ∠DEF = 110°, calculate: ∠AEF


Using ruler and a compass only construct a semi-circle with diameter BC = 7cm. Locate a point A on the circumference of the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral ABCD, such that D is equidistant from AB and BC. Measure ∠ADC and write it down.


In the following figure, AD is the diameter of the circle with centre O. chords AB, BC and CD are equal. If ∠DEF = 110°, Calculate: ∠FAB.


In the given figure, BAD = 65°, ABD = 70°, BDC = 45°.
(i) Prove that AC is a diameter of the circle.
(ii) Find ACB.


In the figure, ∠DBC = 58°. BD is diameter of the circle.

Calculate:

  1. ∠BDC
  2. ∠BEC
  3. ∠BAC


In the given figure AC is the diameter of the circle with centre O. CD is parallel to BE.

∠AOB = 80° and ∠ACE = 20°.

Calculate

  1. ∠BEC
  2. ∠BCD
  3. ∠CED


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×