मराठी

In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°, Calculate: ∠RPQ, ∠STP. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°,

Calculate:

  1. ∠RPQ,
  2. ∠STP.

बेरीज

उत्तर


Join PR.

i. ∠PRQ = 90°

(Angle in a semicircle)

∴ In right triangle PQR,

∠RPQ = 90° – ∠PQR

= 90° – 58°

= 32°

ii. Also, SR || PQ

∠PRS = ∠RPQ = 32°  (Alternate angles)

In cyclic quadrilateral PRST,

∠STP = 180° – ∠PRS

= 180° – 32°

= 148°

(Pair of opposite angles in a cyclic quadrilateral are supplementary)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Circles - Exercise 17 (A) [पृष्ठ २६२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 17 Circles
Exercise 17 (A) | Q 51 | पृष्ठ २६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the figure, m∠DBC = 58°. BD is the diameter of the circle. Calculate:

1) m∠BDC

2) m∠BEC

3) m∠BAC


Calculate the area of the shaded region, if the diameter of the semicircle is equal to 14 cm. Take `pi = 22/7`


ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.

Calculate the value of x, the radius of the inscribed circle.


Prove that the parallelogram, inscribed in a circle, is a rectangle.


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.

Calculate:

  1. ∠DAB,
  2. ∠DBA,
  3. ∠DBC,
  4. ∠ADC.

Also, show that the ΔAOD is an equilateral triangle.


In the given figure, AB is the diameter of a circle with centre O.

If chord AC = chord AD, prove that:

  1. arc BC = arc DB
  2. AB is bisector of ∠CAD.

Further, if the length of arc AC is twice the length of arc BC, find:

  1. ∠BAC
  2. ∠ABC


AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that : AB = 6 × r

In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°. 

Calculate : ∠DBA 

Also, show that the ΔAOD is an equilateral triangle.


In the given figure, O is the centre of the circle and ∠PBA = 45°. Calculate the value of ∠PQB.


In the given figure AC is the diameter of the circle with centre O. CD is parallel to BE.

∠AOB = 80° and ∠ACE = 20°.

Calculate

  1. ∠BEC
  2. ∠BCD
  3. ∠CED


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×