Advertisements
Advertisements
Question
In how many ways can 4 letters be posted in 5 letter boxes?
Solution
Each of the letter can be posted in anyone of the letter boxes.
This means that every letter can be posted in 5 ways.
∴ Total number of ways of posting 4 letters = `5xx5xx5xx5=5^4`
APPEARS IN
RELATED QUESTIONS
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
Find r if `""^5P_r = 2^6 P_(r-1)`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
The total number of 9 digit number which has all different digit is:
The number of ways to arrange the letters of the word “CHEESE”:
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
How many ways can the product a2 b3 c4 be expressed without exponents?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.