English
Karnataka Board PUCPUC Science Class 11

In Ostwald’s process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. - Chemistry

Advertisements
Advertisements

Question

In Ostwald’s process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can be obtained starting only with 10.00 g. of ammonia and 20.00 g of oxygen?

Numerical

Solution

The balanced chemical equation for the given reaction is given as:

4NH3(g) + 5O2(g) 4NO(g) + 6H2O(g)
4 × 17 g
= 68 g
  5 × 32g
= 160 g
  4 × 30g
= 120 g
  6 × 18g
= 108 g

Thus, 68 g of NH3 reacts with 160 g of O2.

Therefore, 10g of NH3 reacts with `(160xx10)/68` g of O2 or  23.53 g of O2.

But the available amount of O2 is 20 g.

Therefore, O2 is the limiting reagent (we have considered the amount of O2 to calculate the weight of nitric oxide obtained in the reaction).

Now, 160 g of O2 gives 120g of NO.

Therefore, 20 g of O2 gives `(120xx20)/160` g of N, 15 g of NO

Hence, a maximum of 15 g of nitric oxide can be obtained

shaalaa.com
Balancing Redox Reactions in Terms of Loss and Gain of Electrons
  Is there an error in this question or solution?
Chapter 8: Redox Reactions - EXERCISES [Page 282]

APPEARS IN

NCERT Chemistry - Part 1 and 2 [English] Class 11
Chapter 8 Redox Reactions
EXERCISES | Q 8.25 | Page 282

RELATED QUESTIONS

Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.


How do you count for the following observations?

Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why? Write a balanced redox equation for the reaction.


Balance the following redox reactions by ion-electron method:

  1. \[\ce{MnO-_4 (aq) + I– (aq) → MnO2 (s) + I2(s) (in basic medium)}\]
  2. \[\ce{MnO-_4 (aq) + SO2 (g) → Mn^{2+} (aq) + HSO-_4  (aq) (in acidic solution)}\]
  3. \[\ce{H2O2 (aq) + Fe^{2+} (aq) → Fe^{3+} (aq) + H2O (l) (in acidic solution)}\]
  4. \[\ce{Cr_2O^{2-}_7 + SO2(g) → Cr^{3+} (aq) + SO^{2-}_4 (aq) (in acidic solution)}\]

Balance the following equation in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.

\[\ce{P4(s) + OH–(aq) —> PH3(g) + HPO^–_2(aq)}\]


Balance the following equation in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.

\[\ce{Cl_2O_{7(g)} + H_2O_{2(aq)} -> ClO-_{2(aq)} + O_{2(g)} + H+_{(aq)}}\]


Justify that the following reaction is redox reaction; identify the species oxidized/reduced, which acts as an oxidant and which acts as a reductant.

\[\ce{2Cu2O_{(S)} + Cu2S_{(S)}->6Cu_{(S)} + SO2_{(g)}}\]


Balance the following redox equation by half-reaction method.

\[\ce{Bi(OH)_{3(s)} + SnO^2-_{2(aq)}->SnO^2-_{3(aq)} + Bi^_{(s)}(basic)}\]


What is the change in oxidation number of Sulphur in following reaction?

\[\ce{MnO^-_{4(aq)} + SO^{2-}_{3(aq)} -> MnO^{2-}_{4(aq)} + SO^{2-}_{4(aq)}}\]


Identify the oxidising agent in the following reaction:

\[\ce{CH4_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}}\]


Write balanced chemical equation for the following reactions:

Permanganate ion \[\ce{(MnO^{-}4)}\] reacts with sulphur dioxide gas in acidic medium to produce \[\ce{Mn^{2+}}\] and hydrogen sulphate ion.


Write balanced chemical equation for the following reactions:

Dichlorine heptaoxide \[\ce{(Cl2O7)}\] in gaseous state combines with an aqueous solution of hydrogen peroxide in acidic medium to give chlorite ion \[\ce{(ClO^{-}2)}\] and oxygen gas. (Balance by ion-electron method)


Balance the following equations by the oxidation number method.

\[\ce{Fe^{2+} + H^{+} + Cr2O^{2-}7 -> Cr^{3+} + Fe^{3+} + H2O}\]


Balance the following equations by the oxidation number method.

\[\ce{I2 + NO^{-}3 -> NO2 + IO^{-}3}\]


Identify the redox reactions out of the following reactions and identify the oxidising and reducing agents in them.

\[\ce{3HCl (aq) + HNO3 (aq) -> Cl2 (g) + NOCl (g) + 2H2O (l)}\]


Identify the redox reactions out of the following reactions and identify the oxidising and reducing agents in them.

\[\ce{HgCl2 (aq) + 2KI (aq) -> HgI2 (s) + 2KCl (aq)}\]


Balance the following ionic equations.

\[\ce{MnO^{-}4 + H^{+} + Br^{-} -> Mn^{2+} + Br2 + H2O}\]


In acidic medium, reaction, \[\ce{MNO^-_4 → Mn^2+}\] an example of ____________.   


In \[\ce{Cu^{2+} + Ag -> Cu + Ag^+}\], oxidation half-reaction is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×