English
Maharashtra State BoardSSC (English Medium) 9th Standard

In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table. sin θ 1161 12 35 cos θ 3537 13 tan θ 1 2120 815 122 - Geometry

Advertisements
Advertisements

Question

In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

sin θ    `11/61`   `1/2`       `3/5`  
cos θ `35/37`       `1/sqrt3`        
tan θ     `1`     `21/20` `8/15`   `1/(2sqrt2)`
Fill in the Blanks
Sum

Solution

sin θ `bb(12/37)` `11/61` `bb(1/sqrt2)` `1/2` `bb(sqrt2/sqrt3)` `bb(21/29)` `bb(8/17)` `3/5` `bb(1/3)`
cos θ `35/37` `bb(60/61)` `bb(1/sqrt2)` `bb(sqrt3/2)` `1/sqrt3` `bb(20/29)` `bb(15/17)` `bb(4/5)` `bb((2sqrt2)/3)`
tan θ `bb(12/35)` `bb(11/60)` 1 `bb(1/sqrt3)` `bb(sqrt2)` `21/20` `8/15` `bb(3/4)` `1/(2sqrt2)`

Explanation:

(i) cos θ = `35/37`            ...(i)[Given]

In right angled ΔABC,

∠C = θ

cos θ = `"Adjacent side of θ"/"Hypotenuse"`

∴ cos θ = `"BC"/"AC"`         ...(ii)

∴ `"BC"/"AC" = 35/37`        ...[From (i) and (ii)]

Let the common multiple be k.

∴ BC = 35k and AC = 37k

Now, AC2 = AB2 + BC2    ...[Pythagoras theorem]

∴ (37k)2 = AB2 + (35k)2

1369k2 = AB2 + 1225k2

AB2 = 1369k2 – 1225k2

AB2 = 144k2

AB2 = (12k)2

Taking square root of both sides,

AB = 12k

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = "12k"/"37k" = 12/37`.

tan θ = `"Opposite side of θ"/"Adjacent side of θ" =  "AB"/"BC" = "12k"/"35k" = 12/35`.

(ii) sin θ = `11/61`       ...(i)[Given]

In right angled ΔABC, ∠C = θ

sin θ = `"Opposite side of θ"/"Hypotenuse"`

∴ sin θ = `"AB"/"AC"`        ...(ii)

∴ `"AB"/"AC" = 11/61`       ...[From (i) and (ii)]

Let the common multiple be k.

AB = 11k and AC = 61k

Now, AC2 = AB2 + BC2         ...[Pythagoras theorem]

∴ (61k)2 = (11k)2 + BC2

∴ 3721k2 = 121k2 + BC2

∴ BC2 = 3721k2 – 121k2

∴ BC2 = 3600k2

∴ BC2 = (60k)2

Taking square root of both sides,

BC = 60k

∴ cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = "60k"/"61k" = 60/61`

tan θ = `"Opposite side of θ"/"Adjacent side of θ" =  "AB"/"BC" = "11k"/"60k" = 11/60`.

(iii) tan θ = 1    ...(i) [Given]

In right angled ∆ABC, ∠C = θ

tan θ = `"Opposite side of θ"/"Adjacent side of θ"`

∴ tan θ = `"AB"/"BC"`    ...(ii)

∴ `"AB"/"BC" = 1/1`      ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 1k and BC = 1k

Now, AC2 = AB2 + BC2           ...[Pythagoras theorem]

∴ AC2 = k2 + k2  

∴ AC2 = 2k2

Taking square root of both sides,

∴ AC = `sqrt2k`

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = "1k"/(sqrt2"k") = 1/sqrt2`

∴ cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = "1k"/(sqrt2"k") = 1/sqrt2`

(iv) sin θ = `1/2`      ...(i)[Given]

In right angled ∆ABC, ∠C = θ

sin θ = `"Opposite side of θ"/"Hypotenuse"`

∴ sin θ = `"AB"/"AC"`      ...(ii)

∴ `"AB"/"AC" = 1/2`        ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 1k and AC = 2k

Now, AC2 = AB2 + BC2         ...[Pythagoras theorem]

∴ (2k)2 = k2 + BC2

∴ 4k2 = k2 + BC2

∴ BC2 = 4k2 – k2

∴ BC2 = 3k2

Taking square root of both sides,

∴ BC = `sqrt3"k"`

∴ cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = (sqrt3"k")/(2"k") = (sqrt3)/2`

tan θ = `"Opposite side of θ"/"Adjacent side of θ" = "AB"/"BC" = (1"k")/(sqrt3"k") = 1/sqrt3`

(v) cos θ = `1/sqrt3`      ...(i)[Given]

In right angled ∆ABC, ∠C = θ

∴ cos θ = `"Adjacent side of θ"/"Hypotenuse"`

∴ cos θ = `"BC"/"AC"`       ...(ii)

∴ `"BC"/"AC" = 1/sqrt3`     ...[From (i) and (ii)]

 Let the common multiple be k.

∴ `"AB" = 1"k" and "BC" = sqrt3"k"`

Now, AC2 = AB2 + BC2     ...[Pythagoras theorem]

`∴ (sqrt3"k")^2 = "AB"^2 + "k"^2`

∴ 3k2 = AB2 – k2

∴ AB2 = 3k2 – k2

∴ AB2 = 2k2

Taking square root of both sides,

AB = `sqrt2`k 

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = (sqrt2"k")/(sqrt3"k") = sqrt2/sqrt3` 

tan θ = `"Opposite side of θ"/"Adjacent side of θ" = "AB"/"BC" = (sqrt2"k")/(1"k") = sqrt2`

(vi) tan θ = `21/20`             ...(i)[Given]

In right angled ∆ABC, ∠C = θ

tan θ = `"Opposite side of θ"/"Adjacent side of θ"`

∴ tan θ = `"AB"/"BC"`      ...(ii)

∴ `"AB"/"BC" = 21/20`      ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 21k and BC = 20k

Now, AC2 = AB2 + BC2           ...[Pythagoras theorem]

AC2 = (21k)2 + (20k)2

AC2 = 441k2 + 400k2

AC2 = (841k)2

Taking square root of both sides,

AC = 29k

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = (21"k")/(29"k") = 21/29`

cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = (20"k")/(29"k") = 20/29` 

(vii) tan θ = `8/15`      ...(i)[Given]

In right angled ∆ABC, ∠C = θ.

tan θ = `"Opposite side of θ"/"Adjacent side of θ"`

∴ tan θ = `"AB"/"BC"`      ...(ii)

∴ `"AB"/"BC" = 8/15`      ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 8k and BC = 15k

Now, AC2 = AB2 + BC2         ...[Pythagoras theorem]

∴ AC2 = (8k)2 + (15k)2 

∴ AC2 = 64k2 + 225k2

∴ AC2 = (289k)2

Taking square root of both sides,

∴ AC = 17k

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = (8"k")/(17"k") = 8/17`

cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = (15"k")/(17"k") = 15/17` 

(viii) sin θ = `3/5`       ...(i)[Given]

In right angled ΔABC, ∠C = θ

sin θ = `"Opposite side of θ"/"Hypotenuse"`

∴ sin θ = `"AB"/"AC"`      ...(ii)

∴ `"AB"/"AC" = 3/5`        ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 3k and AC = 5k

Now, AC2 = AB2 + BC2         ...[Pythagoras theorem]

∴ (5k)2 = (3k)2 + BC2

∴ 25k2 = 9k2 + BC2

∴ BC2 = 25k2 – 9k2

∴ BC2 = 16k2

Taking square root of both sides,

∴ BC = 4k

∴ cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = (4"k")/(5"k") = 4/5`

tan θ = `"Opposite side of θ"/"Adjacent side of θ" = "AB"/"BC" = (3"k")/(4"k") = 3/4`

(ix) tan θ = `1/(2sqrt2)`      ...(i)[Given]

In right angled ∆ABC, ∠C = θ

tan θ = `"Opposite side of θ"/"Adjacent side of θ"`

∴ tan θ = `"AB"/"BC"`      ...(ii)

∴ `"AB"/"BC" = 1/(2sqrt2)`      ...[From (i) and (ii)]

Let the common multiple be k.

∴ AB = 1k and BC = `2sqrt2"k"`

Now, AC2 = AB2 + BC2         ...[Pythagoras theorem]

∴ `"AC"^2 = (1"k")^2 + (2sqrt2"k")^2 `

∴ AC2 = 1k2 + 8k2

∴ AC2 = (9k)2

Taking square root of both sides,

∴ AC = 3k

∴ sin θ = `"Opposite side of θ"/"Hypotenuse" = "AB"/"AC" = (1"k")/(3"k") = 1/3`

cos θ = `"Adjacent side of θ"/"Hypotenuse" = "BC"/"AC" = (2sqrt2"k")/(3"k") = (2sqrt2)/3` 

shaalaa.com
Trigonometric Table
  Is there an error in this question or solution?
Chapter 8: Trigonometry - Practice Set 8.2 [Page 112]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
Chapter 8 Trigonometry
Practice Set 8.2 | Q 1. | Page 112
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×