Advertisements
Advertisements
Question
In the given figure, ∠PQR = 90°, ∠PQS = 90°, ∠PRQ = α and ∠QPS = θ Write the following trigonometric ratios.
- sin α, cos α, tan α
- sin θ, cos θ, tan θ
Solution
(i) In ∆PQR,
sin α = `"Opposite Side Of ∠PRQ"/"Hypotenuse"= "PQ"/"PR"`
cos α = `"Adjacent side of ∠PRQ"/"Hypotenuse" = "RQ"/"PR"`
tan α = `"Opposite side of ∠PRQ"/"Adjacent side of ∠PRQ" = "PQ"/"RQ"`
(ii) In ∆PQS,
sin θ = `"Opposite Side Of θ "/"Hypotenuse" = "QS"/"PS"`
cos θ = `"Adjacent side of θ"/"Hypotenuse" = "PQ"/"PS"`
tan θ = `"Opposite side of θ"/"Adjacent side of θ" = "QS"/"PQ"`
APPEARS IN
RELATED QUESTIONS
In the given Figure, ∠R is the right angle of ΔPQR. Write the following ratios.
- sin P
- cos Q
- tan P
- tan Q
In the right angled Δ XYZ, ∠XYZ = 90° and a, b, c are the lengths of the sides as shown in the figure. Write the following ratios,
- sin X
- tan Z
- cos X
- tan X.
In right angled ΔLMN, ∠LMN = 90°, ∠L = 50° and ∠N = 40°, write the following ratios.
- sin 50°
- cos 50°
- tan 40°
- cos 40°
In the given figure, `angle` PQR = 90° , `angle` PQS = 90° , `angle` PRQ = θ and `angle` QPS = θ Write the following trigonometric ratios.
(i) sin θ, cos θ, tan θ
(ii) sin θ , cos θ , tan θ
In right angled ΔTSU, TS = 5, ∠S = 90°, SU = 12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.
In right angled ΔYXZ, ∠X = 90°, XZ = 8 cm, YZ = 17 cm, find sin Y, cos Y, tan Y, sin Z, cos Z, tan Z.
In right angled ΔLMN, if ∠N =θ, ∠M = 90, cos θ =`24/25`, find sin θ and tan θ Similarly, find (sin2 θ) and (cos2 θ).