Advertisements
Advertisements
Question
केंद्र O वाले किसी वृत्त का AB एक व्यास है और AC एक जीवा इस प्रकार है कि ∠BAC = 30° है। C पर वृत्त की स्पर्श रेखा बढ़ाई गई AB को बिंदु D पर प्रतिच्छेद करती है। सिद्ध कीजिए कि BC = BD है।
Solution
यह दिया गया है कि ∠BAC = 30° और AB व्यास है।
∠ACB = 90° ...(व्यास से बना कोण 90° है।)
∆ABC में,
∠ACB + ∠BAC + ∠ABC = 180°
⇒ 90° + 30° + ∠ABC = 180°
⇒ ∠ABC = 60°
⇒ ∠CBD = 180° – 60° = 120° ...(∠CBD और ∠ABC एक रैखिक युग्म बनाते हैं।)
∆OCD में,
∠OCD = 90° ...(स्पर्श रेखा पर त्रिज्या द्वारा बना कोण)
∠OBC = ∠ABC = 60°
चूँकि OB = OC,
∠OCB = ∠OBC = 60° ...(OC = OB = त्रिज्या)
∆OCB में,
⇒ ∠COB + ∠OCB + ∠OBC = 180°
⇒ ∠COB + 60° + 60° = 180°
⇒ ∠COB = 60°
∆OCD में,
∠COD + ∠OCD + ∠ODC = 180°
⇒ 60° + 90° + ∠ODC = 90° ...(∠COD = ∠COB)
⇒ ∠ODC = 30°
∆CBD में,
∠CBD = 120°
∠BDC = ∠ODC = 30°
⇒ ∠BCD + ∠BDC + ∠CBD = 180°
⇒ ∠BCD + 30° + 120° = 180°
⇒ ∠BCD + 30° = ∠BDC
CD पर BC और BD द्वारा बनाए गए कोण बराबर हैं, इसलिए ∆CBD एक समद्विबाहु त्रिभुज है और इसलिए, BC = BD है।
APPEARS IN
RELATED QUESTIONS
आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है।
आकृति में, AT केंद्र O वाले वृत्त पर एक स्पर्श रेखा इस प्रकार है कि OT = 4 cm और ∠OTA = 30° है। तब, AT बराबर ______ है।
दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या 5 cm है तथा इसकी 8 cm लंबी जीवा AC आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।
सिद्ध कीजिए कि किसी वृत्त का एक व्यास AB उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु A से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।
यदि केंद्र O वाले वृत्त की AB एक जीवा है, AOC एक व्यास है तथा AT बिंदु A पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि ∠BAT = ∠ACB है।
केंद्रों O और O' वाले तथा क्रमशः त्रिज्याओं 3 cm और 4 cm वाले दो वृत्त परस्पर बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं। कि OP और O' P दोनों वृत्तों की स्पर्श रेखाएँ हैं। उभयनिष्ठ जीवा PQ की लंबाई ज्ञात कीजिए।
आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ PQ और PR इस प्रकार खींची गई हैं कि ∠RPQ = 30° है। एक जीवा RS स्पर्श रेखा PQ के समांतर खींची जाती है। ∠RQS ज्ञात कीजिए।
[संकेत: Q से होकर जाती हुई QP पर एक लंब रेखा खींचिए।]
सिद्ध कीजिए कि किसी वृत्त के एक चाप के मध्य-बिंदु पर वृत्त की स्पर्श रेखा उस चाप के सिरों को मिलाने वाली जीवा के समांतर होती है।
आकृति में, केंद्रों O और O' वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि बिंदु O, E, O' संरेखी हैं।
आकृति में, O त्रिज्या 5 cm वाले वृत्त का केंद्र है, T एक बिंदु इस प्रकार है कि OT = 13 cm है तथा OT वृत्त को E पर प्रतिच्छेद करती है। यदि AB, बिंदु E पर वृत्त की एक स्पर्श रेखा है तो AB की लंबाई ज्ञात कीजिए।