English

किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं। यदि 2% परिवार तीनों ही समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या ज्ञात कीजिए जो A, B तथा C में से कोई भी समाचार पत्र नहीं खरीदते हैं।

Sum

Solution

उन परिवारों की संख्या की गणना करें जो A, B और C में से कुछ भी नहीं खरीदते हैं।

हम जानते हैं कि

​⇒ n(U) = 10000
⇒ n(A) = 0.40
⇒ n(B) = 0.20
⇒ n(C) = 0.10​

इसलिए, A, B और C में से कुछ भी नहीं खरीदने वाले परिवारों की संख्या है

⇒ 10000 × [1 − (0.40 + 0.20 + 0.10 − 0.05 − 0.03 − 0.04 + 0.2)]

⇒ 10000 × [1 − 0.6]

⇒ 10000 × 0.4

⇒ 4000​

shaalaa.com
दो समुच्चयों के सम्मिलन और सर्वनिष्ठ पर आधारित व्यावहारिक प्रश्न
  Is there an error in this question or solution?
Chapter 1: समुच्चय - प्रश्नावली [Page 15]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 1 समुच्चय
प्रश्नावली | Q 27. (b) | Page 15

RELATED QUESTIONS

यदि X और Y दो ऐसे समुच्चय हैं कि n(X) = 17, n(Y) = 23 तथा n(X ∪ Y) = 38, तो n(X ∩ Y) ज्ञात कीजिए।


400 व्यक्तियों के समूह में, 250 हिन्दी तथा 200 अंग्रेजी बोल सकते हैं। कितने व्यक्ति हिन्दी तथा अंग्रेजी दोनों बोल सकते हैं?


यदि S और T दो ऐसे समुच्चय हैं कि 5 में 21, T में 32 और S ∩ T में 11 अवयव हों तो S ∪ T में कितने अवयव होंगे?


यदि X और Y दो ऐसे समुच्चय हैं कि x में 40, X ∩ Y में 60 और X ∪ Y में 10 अवयव हों, तो Y में कितने अवयव होंगें?


65 व्यक्तियों के समूह में, 40 व्यक्ति क्रिकेट और 10 व्यक्ति क्रिकेट तथा टेनिस दोनों को पंसद करते हैं, तो कितने व्यक्ति केवल टेनिस को पंसद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पंसद करते हैं?


विद्यार्थियों के समूह में, 100 विद्यार्थी हिन्दी, 50 विद्यार्थी अंग्रेजी तथा 25 विद्यार्थी दोनों भाषाओं को जानते हैं। विद्यार्थियों में से प्रत्येक या तो हिन्दी या अंग्रेजी जानता है। समूह में कुल कितने विद्यार्थी हैं?


60 लोगों के सर्वेक्षण में पाया गया कि 25 लोग समाचार पत्र H, 26 लोग समाचार पत्र T, 26 लोग समाचार पत्र I, 9 लोग H तथा I दोनों, 11 लोग H तथा T दोनों, 8 लोग T तथा । दोनों और 3 लोग तीनों ही समाचार पत्र पढ़ते हैं, तो निम्नलिखित ज्ञात कीजिए:

  1. कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
  2. ठीक ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।

मान लीजिए कि P अभाज्य संख्याओं का समुच्चय है और S = {t|2t - 1|} एक अभाज्य संख्या है। सिद्ध कीजिए कि S ⊂ P.


गणित, भौतिक विज्ञान तथा रसायन विज्ञान में परीक्षा देने वाले 50 विद्यार्थियों में से प्रत्येक कम से कम एक विषय में उत्तीर्ण होता है। 37 गणित में, 24 भौतिक विज्ञान में तथा 43 रसायन विज्ञान में उत्तीर्ण होते हैं। यदि गणित और भौतिक विज्ञान में अधिकतम 19, गणित और रसायन विज्ञान में अधिकतम 29 तथा भौतिक विज्ञान और रसायन विज्ञान में अधिकतम 20 उत्तीर्ण होते हैं, तो तीनों विषयों में उत्तीर्ण होने वाले विद्यार्थियों की अधिकतम संभव संख्या कितनी है?


60 विद्यार्थियों की एक कक्षा में, 25 विद्यार्थी क्रिकेट और 20 विद्यार्थी टेनिस खेलते हैं तथा 10 विद्यार्थी दोनों ही खेल खेलते हैं। उन विद्यार्थियों की संख्या ज्ञात कीजिए जो इन दोनों में से कोई भी खेल नहीं खेलते हैं।


किसी विद्यालय के 200 विद्यार्थियों के सर्वेक्षण (Survey) से ज्ञात हुआ कि 120 विद्यार्थी गणित, 90 भौतिक विज्ञान तथा 70 रसायन विज्ञान पढ़ते हैं। 40 गणित और भौतिक विज्ञान, 30 भौतिक विज्ञान और रसायन विज्ञान, 50 रसायन विज्ञान और गणित पढ़ते हैं तथा 20 इन विषयों में से कोई भी विषय नहीं पढ़ते हैं। उन विद्यार्थियों की संख्या ज्ञात कीजिए, जो इन तीनों ही विषयों को पढ़ते हैं।


किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं। यदि 2% परिवार तीनों ही समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या ज्ञात कीजिए जो केवल समाचार पत्र A खरीदते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल अंग्रेजी पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल संस्कृत पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, फ्रांसीसी और संस्कृत पढ़ते हैं परंतु अंग्रेजी नहीं पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, तीनों भाषाओं में से कम से कम एक भाषा पढ़ते हैं।


50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, तीनों भाषाओं में से एक भी भाषा नहीं पढ़ते हैं।


60 विद्यार्थियों की एक कक्षा में 25 विद्यार्थी क्रिकेट, 20 विद्यार्थी टेनिस और 10 विद्यार्थी दोनों ही खेल खेलते हैं, तो दोनों में से कोई भी खेल नहीं खेलने वाले विद्यार्थियों की संख्या ______


यदि 840 व्यक्तियों वाले किसी नगर में 450 व्यक्ति हिंदी, 300 व्यक्ति अंग्रेजी और 200 व्यक्ति दोनों ही विषय पढ़ते हैं, तो दोनों में से कोई भी विषय नहीं पढ़ने वाले व्यक्तियों की संख्या ______


मान लीजिए कि  S = {x ∣ x 100 से छोटा 3 का एक धनात्मक गुणज है},

P = {x ∣ x, 20 से छोटी एक अभाज्य संख्या है}, तो n(S) + n(P) = ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×