English

मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∠ABC, जीवाओं AC और DE द्वारा केंद्र में अंतरित कोणों के अंतर के आधे के बराबर है।

Sum

Solution

In ΔAOD तथा ΔCOE,

OA = OC (एक ही वृत्त की त्रिज्या)

OD = OE (एक ही वृत्त की त्रिज्या)

AD = CE (दिया गया)

∴ ΔAOD ≅ ΔCOE (SSS सर्वांगसमता नियम)

∠OAD = ∠OCE (By CPCT) ... (1)

∠ODA = ∠OEC (By CPCT) ... (2)

Also,

∠OAD = ∠ODA (As OA = OD) ... (3)

समीकरण (1), (2), और (3) से, हम प्राप्त करते हैं

∠OAD = ∠OCE = ∠ODA = ∠OEC

Let ∠OAD = ∠OCE = ∠ODA = ∠OEC = x

In Δ OAC,

OA = OC

∴ ∠OCA = ∠OAC (होने देना a)

In Δ ODE,

OD = OE

∠OED = ∠ODE (होने देना y)

ADEC एक चक्रीय चतुर्भुज है।

∴ ∠CAD + ∠DEC = 180° (सम्मुख कोण संपूरक होते हैं)

x + a + x + y = 180°

2x + a + y = 180°

y = 180º − 2x − a ... (4)

हालाँकि, ∠DOE = 180º − 2y

And, ∠AOC = 180º − 2a

∠DOE − ∠AOC = 2a − 2y = 2a − 2 (180º − 2x − a)

= 4a + 4x − 360° ... (5)

∠BAC + ∠CAD = 180º (रैखिक जोड़ी)

⇒ ∠BAC = 180º − ∠CAD = 180º − (a + x)

इसी तरह, ∠ACB = 180º − (a + x)

In ΔABC,

∠ABC + ∠BAC + ∠ACB = 180º

(एक त्रिभुज के कोण योग गुण)

∠ABC = 180º − ∠BAC − ∠ACB

= 180º − (180º − a − x) − (180º − a −x)

= 2a + 2x − 180º

= `1/2` [4a + 4x − 360°]

∠ABC = `1/2` [∠DOE − ∠ AOC] [समीकरण का उपयोग करना (5)]

shaalaa.com
चक्रीय चतुर्भुज
  Is there an error in this question or solution?
Chapter 10: वृत्त - प्रश्नावली 10.6 (ऐच्छिक) [Page 223]

APPEARS IN

NCERT Mathematics [Hindi] Class 9
Chapter 10 वृत्त
प्रश्नावली 10.6 (ऐच्छिक) | Q 4. | Page 223

RELATED QUESTIONS

किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है। जीवा द्वारा लघु चाप के किसी बिंदु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिंदु पर भी अंतरित कोण ज्ञात कीजिए।


आकृति में, ∠PQR = 100° है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं। ∠OPR ज्ञात कीजिए।


ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि ∠DBC = 70° और ∠BAC = 30° हो, तो ∠BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो ∠ECD ज्ञात कीजिए।


दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं (देखिए आकृति में)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।


सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।


एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?


सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेदन बिंदु से होकर गुजरता है।


AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:
(I) AC और BD व्यास हैं,
(Ii) ABCD एक आयत है।


यदि A, B, C और D चार बिंदु इस प्रकार हैं कि ∠BAC = 45° और ∠BDC = 45° है, तो A, B, C और D चक्रीय है।


ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×