Advertisements
Advertisements
Question
Make c the subject of formula x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
Solution
x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
⇒ 2ax = `-"b" ± sqrt("b"^2 - 4"ac")`
⇒ 2ax + b = `± sqrt("b"^2 - 4"ac")`
Taking square both sides
⇒ (2ax + b)2 = b2 - 4ac
⇒ 4ac = b2 - (2ax + b)2
⇒ c = `("b"^2 - (2"ax" + "b")^2)/(4"a")`.
APPEARS IN
RELATED QUESTIONS
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
Make a the subject of formula S = `("a"("r"^"n" - 1))/("r" - 1)`
Make a the subject of formula x = `sqrt(("a" + "b")/("a" - "b")`
Make N the subject of formula I = `"NG"/("R" + "Ny")`
Given: mx + ny = p and y = ax + b. Find x in terms of m, n, p, a and b.
If A = pr2 and C = 2pr, then express r in terms of A and C.
If V = pr2h and S = 2pr2 + 2prh, then express V in terms of S, p and r.
Make h the subject of the formula R = `"h"/(2)("a" - "b")`. Find h when R = 108, a = 16 and b = 12.
"The volume of a cylinder V is equal to the product of π and square of radius r and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 44cm3, π = `(22)/(7)`, h = 14cm.
"The volume of a cone V is equal to the product of one third of π and square of radius r of the base and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 1232cm3, π = `(22)/(7)`, h = 24cm.