Advertisements
Advertisements
Question
Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
Solution
Let AB be the height of the tip of the fishing rod from the water surface. Let BC be the horizontal distance of the fly from the tip of the fishing rod.
Then, AC is the length of the string.
AC can be found by applying Pythagoras theorem in ΔABC.
AC2 = AB2 + BC2
AB2 = (1.8 m)2 + (2.4 m)2
AB2 = (3.24 + 5.76) m2
AB2 = 9.00 m2
Thus, the length of the string out is 3 m.
She pulls the string at the rate of 5 cm per second.
Therefore, string pulled in 12 seconds = 12 × 5 = 60 cm = 0.6 m
Let the fly be at point D after 12 seconds.
Length of string out after 12 seconds is AD.
AD = AC − String pulled by Nazima in 12 seconds
= (3.00 − 0.6) m
= 2.4 m
In ΔADB,
AB2 + BD2 = AD2
(1.8 m)2 + BD2 = (2.4 m)2
BD2 = (5.76 − 3.24) m2 = 2.52 m2
BD = 1.587 m
Horizontal distance of fly = BD + 1.2 m
= (1.587 + 1.2) m
= 2.787 m
= 2.79 m
APPEARS IN
RELATED QUESTIONS
Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m, find the distance between their tops
In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:
M andN are the mid-points of the sides QR and PQ respectively of a PQR, right-angled at Q.
Prove that:
(i) PM2 + RN2 = 5 MN2
(ii) 4 PM2 = 4 PQ2 + QR2
(iii) 4 RN2 = PQ2 + 4 QR2(iv) 4 (PM2 + RN2) = 5 PR2
Prove that (1 + cot A - cosec A ) (1 + tan A + sec A) = 2
A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.
Find the Pythagorean triplet from among the following set of numbers.
2, 4, 5
∆ABC is right-angled at C. If AC = 5 cm and BC = 12 cm. find the length of AB.
A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?
In a right-angled triangle ABC, if angle B = 90°, then which of the following is true?
If the areas of two circles are the same, they are congruent.