Advertisements
Advertisements
Question
निम्नलिखित आव्यूह को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए:
`[(3,5),(1, -1)]`
Solution
मान लीजिए कि, A = `[(3,5),(1, -1)],` A' =`[(3,1),(5, -1)]`
इसलिए, A `1/2` (A + A') + `1/2` (A - A')
माना, P = `1/2` (A + A') = `1/2 ([(3, 5),(1, -1)]) + ([(3, 1),(5, -1)])`
`= 1/2 [(3 + 3, 5 + 1), (1 + 5, -1 -1)]`
`= 1/2 [(6, 6), (6, -2)]`
`= [(3, 3), (3, -1)]`
तथा, `"P'" = [(3, 3), (3, -1)] = "P",`
इसलिए आव्यूह P एक सममित आव्यूह है।
फिर, Q = `1/2` (A - A') = `1/2 ([(3, 5),(1, -1)]) - ([(3, 1),(5, -1)])`
`= 1/2 [(3 - 3, 5 -1), (1 - 5, -1 + 1)]`
`= 1/2 [(0,4), (-4, 0)]`
`= [(0,2), (-2, 0)]`
तथा, Q' = `[(0,2), (-2, 0)]` = - Q,
इसलिए आव्यूह Q एक विषम सममित आव्यूह है।
इसलिए, A = P + Q
= `[(3, 3), (3, -1)] + [(0, -2),(-2, 0)]`
APPEARS IN
RELATED QUESTIONS
यदि `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` तथा B = `[(-4,1,-5),(1,2,0),(1,3,1)]` है तो सत्यापित कीजिए कि
(A + B)' = A' + B'
यदि `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` तथा B = `[(-4,1,-5),(1,2,0),(1,3,1)]` है तो सत्यापित कीजिए कि (A - B)' = A' - B'
A तथा B आव्यूहों के लिए सत्यापित कीजिए कि (AB)' = B' A', जहाँ `A =[(1),(-4), (3)], B = [(-1, 2, 1)]`
A तथा B आव्यूहों के लिए सत्यापित कीजिए कि (AB)' = B' A', जहाँ `A = [(0), (1),(2)] , B = [(1 , 5, 7)]`
यदि A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` हो तो सत्यापित कीजिए कि A' A = I
यदि B = `[(sin alpha, cos alpha),(-cos alpha, sin alpha)]` हो तो सत्यापित कीजिए कि A’ A = I
सिद्ध कीजिए कि आव्यूह A `= [(1,-1,5),(-1,2,1),(5,1,3)]` एक सममित आव्यूह है।
आव्यूह A = `[(1,5),(6,7)]` के लिए सत्यापित कीजिए कि (A + A’) एक समित आव्यूह है।
निम्नलिखित आव्यूह को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए:
`[(6,-2,2),(-2,3,-1),(2,-1,3)]`
यदि A तथा B सममित आव्यूह हैं तो सिद्ध कीजिए कि AB - BA एक विषम सममित आव्यूह है।
सिद्ध कीजिए कि आव्यूह B’ AB सममित अथवा विषम सममित है, यदि A सममित अथवा विषम सममित है।