Advertisements
Advertisements
Question
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
(ax + b)n (cx + d)m
Solution
माना f(x) = (ax + b)n (cx + d)m
Leibnitz गुणन सूत्र के अनुसार,
f'(x) = `(ax + b)^n d/dx (cx + d)^m + (cx + d)^m d/dx (ax + b)^n` ...(1)
अब, मान लीजिए f1(x) = (cx + d)m
f1(x + h) = (cx + ch + d)m
f1(x) = `lim_(h->0)(f_1(x + h) - f_1(x))/h`
= `lim_(h->0) ((cx + ch + d)^m - (cx + d)^n)/h`
= `(cx + d)^m lim_(h-0)1/h [(1 + (ch)/(cx + d))^m - 1]`
= `(cx + d)^m lim_(h-0) 1/h[(1 + (mch)/(cx + d) + (m(m - 1))/2 ((c^2h^2))/(cx + d)^2 + ...) -1]`
= `(cx + d)^m lim_(h->0) 1/h [(mch)/(cx + d) + (m(m - 1)c^2h^2)/(2(cx + d)^2) + ...("h के उच्च घात वाले पद")]`
= `(cx + d)^m lim_(h->0) [(mc)/(cx + d) + (m(m - 1)c^2h)/(2(cx + d)^2 + ...]]`
= `(cx + d)^m [(mc)/(cx + d) + 0]`
= `(mc(cx + d)^m)/(cx + d)`
= mc (cx + d)m - 1
`d/dx (cx + d)^m` = mc (cx + d)m - 1 .....(2)
उसी प्रकार, `d/dx (ax + b)^n` = na (ax + b)n - 1 ...(3)
इसलिए, (1), (2), और (3) से, हम प्राप्त करते हैं
f(x) = (ax + b)n {mc(cx + d)m - 1} + (cx + d)m {na (ax + b)n - 1}
= (ax + b)n - 1 (cx + d)m - 1 [mc (ax + b) + na (cx + d)]
APPEARS IN
RELATED QUESTIONS
x = 10 पर x2 – 2 का अवकलज ज्ञात कीजिए।
x = 100 पर 99x का अवकलज ज्ञात कीजिए।
x = 1 पर x का अवकलज ज्ञात कीजिए।
प्रथम सिद्धांत से निम्नलिखित फलन का अवकलज ज्ञात कीजिए:
x3 – 27
प्रथम सिद्धांत से निम्नलिखित फलन का अवकलज ज्ञात कीजिए:
`1/x^2`
प्रथम सिद्धांत से निम्नलिखित फलन का अवकलज ज्ञात कीजिए:
`(x + 1)/(x - 1)`
निम्नलिखित का अवकलज ज्ञात कीजिए:
`2x - 3/4`
निम्नलिखित का अवकलज ज्ञात कीजिए:
(5x3 + 3x – 1) (x – 1)
निम्नलिखित का अवकलज ज्ञात कीजिए:
x –3(5 + 3x)
निम्नलिखित का अवकलज ज्ञात कीजिए:
x5 (3 – 6x– 9)
निम्नलिखित का अवकलज ज्ञात कीजिए:
x– 4 (3 – 4x–5)
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
(x + a)
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`(px + q) (r/x + s)`
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
(ax + b) (cx + d)2
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`(1 + 1/x)/(1 - 1/x)`
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`(ax + b)/(px^2 + qr + r)`
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`4sqrtx - 2`
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
(ax + b)n
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
sin (x + a)
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`(sec x - 1)/(sec x + 1)`
निम्नलिखित फलन के अवकलज ज्ञात कीजिए (यह समझा जाए कि a, b, c, d, p, q, r और s निश्चित शून्येतर अचर हैं और m तथा n पूर्णांक हैं।):
`sin(x + a)/cosx`