Advertisements
Advertisements
Question
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Solution
बायाँ पक्ष = `(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)
= `((cos4 x + cos2x)+cos 3x)/((sin4x + sin 2x) + sin 3x)`
= `(2cos ((4x + 2x)/2) cos ((4x - 2x)/2) + cos 3x)/(2sin ((4x + 2x)/2) cos ((4x - 2x)/2) + sin 3x)`
= `(2cos 3x cosx+cos3x)/(2sin 3x cosx + sin3x)`
= `(cos3x (2cosx+ 1))/(sin3x(2cosx +1))`
= `(cos3x)/(sin3x)`
= cot 3x = दायाँ पक्ष।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
cos12° + cos84° + cos156° + cos132° का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
का मान निम्नलिखित है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`