Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
उत्तर
बायाँ पक्ष = `(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)
= `((cos4 x + cos2x)+cos 3x)/((sin4x + sin 2x) + sin 3x)`
= `(2cos ((4x + 2x)/2) cos ((4x - 2x)/2) + cos 3x)/(2sin ((4x + 2x)/2) cos ((4x - 2x)/2) + sin 3x)`
= `(2cos 3x cosx+cos3x)/(2sin 3x cosx + sin3x)`
= `(cos3x (2cosx+ 1))/(sin3x(2cosx +1))`
= `(cos3x)/(sin3x)`
= cot 3x = दायाँ पक्ष।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
tan75° - cot75° का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
sin(45° + θ) - cos(45° - θ) का मान है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
का मान निम्नलिखित है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।