हिंदी

फलन y=3sinx+cosx के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।

रिक्त स्थान भरें

उत्तर

जान लेते है कि, `y = sqrt3sinx + cosx`

इसलिए, x-axis से y = `sqrt3sinx+cosx` आरेख के बिंदू तक अधिकतम दूरी:

​= `sqrt((sqrt3)^2 + (1)^2)`

= `sqrt(3 + 1)`

= 2​

x-axis से `y = sqrt3sinx + cosx` आरेख के बिंदू तक अधिकतम दूरी 2 है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 67. | पृष्ठ ६०

संबंधित प्रश्न

मान ज्ञात कीजिए: sin 75°


मान ज्ञात कीजिए  tan 15°


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


निम्नलिखित को सिद्ध कीजिए:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।


यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।

[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।


tan75° - cot75° का मान है।


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।


यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -


यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos  θ/2` का मान बराबर है -


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

θ का एक मान, जो समीकरण sin4θ - 2sin2θ - 1 = 0 को संतुष्ट करता है, तथा 0 और 2π के बीच में स्थित होता है।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×