Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
उत्तर
बायाँ पक्ष `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y)`
= cos `[(pi/4 - x + pi/4 - y)]`
[∵ cos A cos B - sin A sin B = cos (A + B)]
= cos `(pi/2 - (x +y))`
= sin (x + y) = दायाँ पक्ष। `(∵ cos (pi/2 - θ) = sin θ)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
sin(45° + θ) - cos(45° - θ) का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।