Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
उत्तर
बायाँ पक्ष `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y)`
= cos `[(pi/4 - x + pi/4 - y)]`
[∵ cos A cos B - sin A sin B = cos (A + B)]
= cos `(pi/2 - (x +y))`
= sin (x + y) = दायाँ पक्ष। `(∵ cos (pi/2 - θ) = sin θ)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
का मान निम्नलिखित है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।