Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
उत्तर
बायाँ पक्ष = sin x + sin 3x + sin 5x + sin 7x = (sinx + sin7x) + (sin3x + sin5x)
= `2sin (7x + x)/2 cos (7x - x)/2 + 2sin (5x +3x)/2 cos (5x - 3x)/2` `[∵ sinx + sin y = 2sin (x + y)/2 cos (x - y)/2]`
= 2sin 4x cos 3x + 2sin 4x cos x [∵ cos (-θ) = cos θ]
= 2sin 4x (cos 3x + cosx) `[∵cos x + cos y = 2cos (x + y)/2 cos (x - y)/2]`
= `2sin 4x (2cos ((3x +x)/2) cos ((3x - x)/2))`
= 2 sin 4x (2cos 2x cosx) = 4 cos x cos 2x sin 4x
= दायाँ पक्ष।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
निम्नलिखित को सिद्ध कीजिए:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan75° - cot75° का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।