Advertisements
Advertisements
प्रश्न
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
उत्तर
जान लेते है कि, ∠C = 90° के साथ ΔABC
इसलिए, समीकरण जिनके वर्गमूल tanA और tanB है:
देख सकते है कि, ∠C = 90°
इसलिए, A + B = 90°
⇒ tan(A + B) = tan90°
⇒ `(tanA + tanB)/(1 − tanA tanB) = 1/0`
⇒ tanA tanB = 1 ……(1)
tanA + tanB की गणना करने पर,
∴ tanA + tanB = `sinA/cosA + sinB/cosB`
⇒ tanA + tanB = `(sinA cosB + cosA sinB)/(cosA cosB)`
= `(sin(A +B))/(cosA cosB)`
विस्तृत करने पर,
⇒ tanA + tanB = `sin90^circ/(cosA cos(90^circ - A))`
⇒ tanA + tanB = `1/(cosA cosA) = 2/(2sinA cosA)`
⇒ tanA + tanB = `2/(sin2A)`
समीकरण (1) और (2) का उपयोग करने पर,
∴ `x^2 - (2/(sin2A))x + 1 = 0`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos θ/2` का मान बराबर है -
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।