मराठी

निम्नलिखित को सिद्ध कीजिए: cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित को सिद्ध कीजिए:

cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1

बेरीज

उत्तर

बायाँ पक्ष = cos 6x

= cos 3(2x)

= 4 cos3 2x – 3 cos 2x [cos 3A = 4 cos3 A – 3 cos A]

= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1) [cos 2x = 2 cos2 x – 1]

= 4 [(2 cos2 x)3 – (1)3 – 3 (2 cos2 x)2 + 3 (2 cos2 x)] – 6cos2 x + 3

= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3

= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3

= 32 cos6x – 48 cos4x + 18 cos2x – 1

दायाँ पक्ष।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली 3.3 [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली 3.3 | Q 25. | पृष्ठ ८२

संबंधित प्रश्‍न

सिद्ध कीजिए: `sin^2  pi/6 + cos^2  pi/3 - tan^2  π/4 = - 1/2`


सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


मान ज्ञात कीजिए  tan 15°


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।

[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।


sin(45° + θ) - cos(45° - θ) का मान है।


sin50° - sin70° + sin10° का मान बराबर है -

यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×