Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
उत्तर
बायाँ पक्ष = `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3`
= `2sin^2(pi-pi/4)+2xx(1/sqrt2)^2 + 2 xx (2)^2`
(∵ cos `pi/4 = 1/sqrt2,sec pi/3=2`)
= `2 sin^2 pi/4+2/2+ xx4` [∵ sin `(pi-θ)`=sin θ]
= 2 x `(1/sqrt2)^2 + 2/2` + 8
(∵ `sin pi/4 = 1/sqrt2`)
= `2/2`+ 1 + 8
= 10 = दायाँ पक्ष।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
tan75° - cot75° का मान है।
tan3A - tan2A - tanA बराबर है।
sin(45° + θ) - cos(45° - θ) का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।