मराठी

Tan3A - tan2A - tanA बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

tan3A - tan2A - tanA बराबर है।

पर्याय

  • tan3A tan2A tanA

  • -tan3A tan2A tanA

  • tanA tan2A - tan2A tan3A - tan3A tanA

  • इनमें से कोई नहीं

MCQ

उत्तर

tan3A tan2A tanA

स्पष्टीकरण:

जान लेते हैं कि, दी गई अभिव्यक्ती tan3A - tan2A - tanA है।

ज्ञात है कि, tan3A = tan(2A + A)

दो कोणों के जोड के त्रिकोणमितीय फल का उपयोग करने पर,

∴ `tan3A = (tan2A + tanA)/(1 - tan2A tanA)`

⇒ tan3A(1 - tan2A tanA) = tan2A + tanA

⇒ tan3A - tan3A tan2A tanA = tan2A + tanA

⇒ tan3A - tan2A - tanA = tan3A tan2A tanA

सही पर्याय tan3A tan2A tanA है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 42. | पृष्ठ ५७

संबंधित प्रश्‍न

सिद्ध कीजिए: `sin^2  pi/6 + cos^2  pi/3 - tan^2  π/4 = - 1/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

sin26x – sin24x = sin 2x sin 10x.


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


निम्नलिखित को सिद्ध कीजिए:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


निम्नलिखित को सिद्ध कीजिए:

`(sin x - siny)/(cos x + cos y)= tan  (x -y)/2`


निम्नलिखित को सिद्ध कीजिए:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


निम्नलिखित को सिद्ध कीजिए:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


निम्नलिखित को सिद्ध कीजिए:

cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1


यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।


tan75° - cot75° का मान है।


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


sin(45° + θ) - cos(45° - θ) का मान है।


यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।


यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


`sin  π/18 + sin  π/9 + sin  (2π)/9 + sin  (5π)/18`

का मान निम्नलिखित है -


यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×