Advertisements
Advertisements
प्रश्न
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
उत्तर
ज्ञात है कि, cos(θ + ϕ) = mcos(θ − ϕ),
सिद्ध करें कि, `tanθ = (1−m)/(1 + m) cotϕ`
`(cos(θ+ϕ))/(cos(θ−ϕ))` = m के रूप में लिखने पर,
योगांतरानुपात के प्रमेय से,
cos(A + B) + cos(A - B) = 2cos`((A + B)/2)cos((A - B)/2)` का प्रयोग करने पर,
⇒ `(2cos((theta + phi + theta - phi)/2)cos((theta + phi - theta + phi)/2))/(-2sin((theta + phi + theta - phi)/2)sin((theta + phi - theta + phi)/2)) = (m + 1)/(m - 1)`
⇒ `(costheta.cosphi)/(sintheta.sinphi) = (m + 1)/(m - 1)`
हल करने पर,
⇒ `(-cotphi)/(tantheta) = (m + 1)/(m - 1)`
⇒ `(cottheta)/(tantheta) = (1 + m)/(1 - m)`
⇒ `tantheta = (1 - m)/(1 + m) cottheta`
यह सिद्ध है कि `tantheta = (1 - m)/(1 + m)cot phi`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan75° - cot75° का मान है।
sin(45° + θ) - cos(45° - θ) का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।