मराठी

व्यंजक 3[sin4(3π2-α)+sin4(3π+α)]-2[sin6(π2+α)+sin6(5π-α)] का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।

बेरीज

उत्तर

`3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए,

= `3[sin^4((3pi)/2 - alpha) + sin^4(3pi + alpha)] - 2[sin^6(pi/2 - alpha) + sin^6(5pi + alpha)]`

= `3[cos^4alpha + sin^4(pi + alpha)] - 2[cos^6alpha + sin^6(pi + alpha)]`

= `3[cos^4alpha + sin^4alpha + 2sin^2alphacos^2alpha - 2sin^2alphacos^2alpha] - 2[(cos^2alpha + sin^2alpha)^3 - 3sin^2alpha cos^2alpha(cos^2alpha + sin^2alpha)]`

`sin^2theta + cos^2theta = 1` में रखने पर

= `3[(sin^2alpha + cos^2alpha)^2 - 2sin^2alpha cos^2alpha] - 2[1 - 3sin^2alpha cos^2alpha]`

= `3[1 - 2sin^2alpha cos^2alpha] - 2[1 - 3sin^2alpha cos^2alpha]`

= `3 - 6sin^2alpha cos^2alpha - 2 + 6sin^2alpha cos^2alpha`

= 3 - 2

= 1

दी हुई अभिव्यक्ती का मान 1 है।

shaalaa.com
त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 22. | पृष्ठ ५४

संबंधित प्रश्‍न

`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


यदि tan θ = `(-4)/3` है, तो sinθ है


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।

[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

व्यंजक `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8` का मान ज्ञात कीजिए।

[संकेत: व्यंजक `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]` के रूप में सरल कीजिए।


यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______


यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA −  5cosA + sinA का मान है -


cos248° – sin212° का मान है -

[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×