Advertisements
Advertisements
प्रश्न
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
उत्तर
माना कि, 22°30′ = `theta/2`
इसलिए, θ = 45°
tan 22°30′ = `tan theta/2`
= `(sin theta/2)/(cos theta/2)`
= `(2sin theta/2 cos theta/2)/(2cos^2 theta/2)`
= `sintheta/(1 + costheta)`
θ = 45° का मान रखने पर,
= `sin 45^circ/(1 + cos 45^circ)`
= `1/(1 + sqrt2/sqrt2)`
= `1/(sqrt(2) + 1)`
हर को युक्तिसंगत करणे पर,
= `1/(sqrt2 + 1) xx ((sqrt2 - 1))/((sqrt2 - 1))`
= `sqrt2 - 1`
आवश्यक मान tan22°30' = `sqrt2 - 1`
APPEARS IN
संबंधित प्रश्न
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।
यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।
यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
यदि tan θ = `(-4)/3` है, तो sinθ है
sinx cosx का अधिकतम मान है:
यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।
संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`
यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`
`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`
यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।
[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]
सिद्ध कीजिए कि cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin7θ sin8θ है।
`["संकेत:" "L.H.S." = 1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2] "के रूप में व्यक्त कीजिए।"]`
यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि
यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______
यदि f(x) = cos2x + sec2x है, तो ______
[संकेत: A.M ≥ G.M.]
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA − 5cosA + sinA का मान है -
cos248° – sin212° का मान है -
[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]
यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।