मराठी

यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि 1-sinθ1+sinθ+1+sinθ1-sinθ = −2sec θ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ

बेरीज

उत्तर

हमें प्राप्त है:

`sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) = (1 - sin theta)/sqrt(1 - sin^2theta) + (1 + sin theta)/sqrt(1 - sin^2theta)`

= `2/sqrt(cos^2theta)`

= `2/|cos theta|`  .....(क्योंकि प्रत्येक वास्तविक संख्या α के लिए `sqrt(alpha^2) = |alpha|` होता है)

दिया है कि θ दूसरे चतुर्थांश में स्थित है। इसलिए, |cosθ| = -cosθ (क्योंकि cosθ < 0 है)

अतः दिए हुए व्यंजक का अभीष्ट मान = `2/(-costheta) = - 2 sectheta`

shaalaa.com
त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - हल किये हुए उदाहरण [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
हल किये हुए उदाहरण | Q 4 | पृष्ठ ४०

संबंधित प्रश्‍न

`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।


यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`


sinx cosx का अधिकतम मान है:


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin7θ sin8θ है।

`["संकेत:"  "L.H.S." = 1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2] "के रूप में व्यक्त कीजिए।"]`


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।


व्यंजक `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8` का मान ज्ञात कीजिए।

[संकेत: व्यंजक `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]` के रूप में सरल कीजिए।


यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


यदि sinx + cosx = a, तो |sinx - cosx| = ______


x > 0 दिया रहने पर, f(x) = `−3cossqrt(3+x+x^2)` के मान अंतराल ______ में स्थित हैं।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।


निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:

C1 C2
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos(x + y) cos(x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×