Advertisements
Advertisements
प्रश्न
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
उत्तर
`sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
LCM लेने पर,
= `(a + b + a - b)/sqrt((a - b)(a + b))`
= `(2a)/sqrt(a^2 - b^2)`
= `(2a)/(asqrt(1 - b^2/a^2))`
`a/b = tanx` को रखने पर और हल करने पर,
= `2/sqrt(1 - tan^2x)`
= `2/sqrt(1 - (sin^2x)/(cos^2x))`
= `1/(1/cosx xx sqrt(cos^2x - sin^2x))`
= `(2cosx)/(sqrt(cos^2x - sin^2x))`
आवश्यक मान `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b)) = (2cosx)/(sqrt(cos^2x - sin^2x)) = (2cosx)/sqrt(cos2x)`
APPEARS IN
संबंधित प्रश्न
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।
यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)` का मान ज्ञात कीजिए।
यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
sinx cosx का अधिकतम मान है:
स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
सिद्ध कीजिए कि `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।
संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`
यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।
[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]
व्यंजक `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8` का मान ज्ञात कीजिए।
[संकेत: व्यंजक `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]` के रूप में सरल कीजिए।
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA − 5cosA + sinA का मान है -
cos248° – sin212° का मान है -
[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]
यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______
यदि sinx + cosx = a, तो sin6x + cos6x = ______
यदि sinx + cosx = a, तो |sinx - cosx| = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |