Advertisements
Advertisements
प्रश्न
यदि sinx + cosx = a, तो sin6x + cos6x = ______
उत्तर
समझें कि दी गई अभिव्यक्ति है sinx + cosx = a
दोनों पक्षों को वर्ग,
∴ `sin^2x + cos^2x + 2sinx cosx = a^2`
⇒ 1 + 2sinx cosx = a2
⇒ sinx cosx = `(a^2 - 1)/2`
गणना `sin^6 + cos^6x`
∴ `sin^6x + cos^6x = (sin^2x)^3 + (cos^2x)^3`
⇒ `sin^6x + cos^6x = (sin^2x + cos^2x) - 3sin^2x cos^2x(sin^2x + cos^2x)`
= `1 - 3((a^2 - 1)/2)^2 . 1`
= `1/4[4 - 3(a^2 - 1)^2]`
APPEARS IN
संबंधित प्रश्न
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।
tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
sinx cosx का अधिकतम मान है:
स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।
संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।
[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]
यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि
यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।
व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।
यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।
यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA − 5cosA + sinA का मान है -
यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |