English

यदि sinx + cosx = a, तो sin6x + cos6x = ______ - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि sinx + cosx = a, तो sin6x + cos6x = ______

Fill in the Blanks

Solution

समझें कि दी गई अभिव्यक्ति है sinx + cosx = a

दोनों पक्षों को वर्ग,

∴ `sin^2x + cos^2x + 2sinx cosx = a^2`

⇒ 1 + 2sinx cosx = a2

⇒ sinx cosx = `(a^2 - 1)/2`

गणना `sin^6 + cos^6x`

∴ `sin^6x + cos^6x = (sin^2x)^3 + (cos^2x)^3`

⇒ `sin^6x + cos^6x = (sin^2x + cos^2x) - 3sin^2x cos^2x(sin^2x + cos^2x)`

= `1 - 3((a^2 - 1)/2)^2 . 1`

= `1/4[4 - 3(a^2 - 1)^2]`

shaalaa.com
त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 59]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 63. (i) | Page 59

RELATED QUESTIONS

`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`


sinx cosx का अधिकतम मान है:


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`


सिद्ध कीजिए कि cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin7θ sin8θ है।

`["संकेत:"  "L.H.S." = 1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2] "के रूप में व्यक्त कीजिए।"]`


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।


यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


व्यंजक `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8` का मान ज्ञात कीजिए।

[संकेत: व्यंजक `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]` के रूप में सरल कीजिए।


यदि f(x) = cos2x + sec2x है, तो ______

[संकेत: A.M ≥ G.M.]


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA −  5cosA + sinA का मान है -


यदि sinx + cosx = a, तो |sinx - cosx| = ______


x > 0 दिया रहने पर, f(x) = `−3cossqrt(3+x+x^2)` के मान अंतराल ______ में स्थित हैं।

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×