Advertisements
Advertisements
Question
सिद्ध कीजिए कि `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
Solution
L.H.S. = `(tanA + secA - 1)/(tanA - secA + 1)`
हर को युक्तिसंगत बनाने पर,
= `(tanA + (secA - 1))/(tanA - (secA + 1)) xx (tanA + (secA + 1))/(tanA + (secA + 1))`
= `{tanA + (secA - 1)}^2/(tan^2A - (secA + 1)^2)`
(a + b)2 = a2 + 2ab + b2 लागु करने पर,
= `{{tan^2A + sec^2A - 2secA + 1 + 2tanA(secA - 1)}}/(tan^2A - sec^2A + 2secA + 1)`
ज्ञात है कि, sec2θ - tan2θ = 1
इसलिए,
= `{(tan^2A + sec^2A - 2secA + 1 + 2tanAsecA - 2tanA)}/(-1 + 2secA + 1)`
= `{(tan^2A + 1) + sec^2A - 2secA + 2tanA secA - 2tanA}/(1 + 2secA + 1)`
= `{(sec^2A + sec^2A - 2secA + 2tanA secA - 2tanA)}/(2secA - 2)`
= `{(2sec^2A - 2secA + 2tanAsecA - 2tanA)}/(2secA - 2)`
2 को सामान्य मान लेकर आगे सुलझाने पर,
= `(2(secA(secA - 1) + tanA(secA - 1)))/(2(secA - 1))`
(secA - 1) को सामान्य मान लेने पर,
= `((secA - 1)(secA + tanA))/((secA - 1))`
= secA + tanA
= `1/cosA + sinA/cosA`
= `(1 + sinA)/cosA`
अतः, यह R.H.S. के बराबर है।
यह सिद्ध किया गया है कि L.H.S. = R.H.S. अर्थात
`(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
APPEARS IN
RELATED QUESTIONS
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
यदि tan θ = `(-4)/3` है, तो sinθ है
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`
`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`
यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।
[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]
सिद्ध कीजिए कि cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin7θ sin8θ है।
`["संकेत:" "L.H.S." = 1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2] "के रूप में व्यक्त कीजिए।"]`
सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।
यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।
[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]
यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि
व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।
यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA − 5cosA + sinA का मान है -
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
यदि sinx + cosx = a, तो sin6x + cos6x = ______
यदि sinx + cosx = a, तो |sinx - cosx| = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |