English

व्यंजक 3[sin4(3π2-α)+sin4(3π+α)]-2[sin6(π2+α)+sin6(5π-α)] का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।

Sum

Solution

`3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए,

= `3[sin^4((3pi)/2 - alpha) + sin^4(3pi + alpha)] - 2[sin^6(pi/2 - alpha) + sin^6(5pi + alpha)]`

= `3[cos^4alpha + sin^4(pi + alpha)] - 2[cos^6alpha + sin^6(pi + alpha)]`

= `3[cos^4alpha + sin^4alpha + 2sin^2alphacos^2alpha - 2sin^2alphacos^2alpha] - 2[(cos^2alpha + sin^2alpha)^3 - 3sin^2alpha cos^2alpha(cos^2alpha + sin^2alpha)]`

`sin^2theta + cos^2theta = 1` में रखने पर

= `3[(sin^2alpha + cos^2alpha)^2 - 2sin^2alpha cos^2alpha] - 2[1 - 3sin^2alpha cos^2alpha]`

= `3[1 - 2sin^2alpha cos^2alpha] - 2[1 - 3sin^2alpha cos^2alpha]`

= `3 - 6sin^2alpha cos^2alpha - 2 + 6sin^2alpha cos^2alpha`

= 3 - 2

= 1

दी हुई अभिव्यक्ती का मान 1 है।

shaalaa.com
त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 54]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 22. | Page 54

RELATED QUESTIONS

यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।


`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।

संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`


यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।

[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


व्यंजक `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8` का मान ज्ञात कीजिए।

[संकेत: व्यंजक `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]` के रूप में सरल कीजिए।


यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______


यदि f(x) = cos2x + sec2x है, तो ______

[संकेत: A.M ≥ G.M.]


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA −  5cosA + sinA का मान है -


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


यदि sinx + cosx = a, तो |sinx - cosx| = ______


x > 0 दिया रहने पर, f(x) = `−3cossqrt(3+x+x^2)` के मान अंतराल ______ में स्थित हैं।

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×