Advertisements
Advertisements
Question
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
Solution
ज्ञात है कि, acos2θ + bsin2θ = c
सिद्ध करें कि, `tanα + tanβ = (2b)/(a+c)`
चूंकी, cos2θ = `(1−tan^2θ)/(1+tan^2θ)` और `sin2θ = (2tan^2θ)/(1+tan^2θ)`
अतः,
`a[(1 -tan^2theta)/(1 + tan^2theta)] + b[(2tantheta)/(1 + tan^2theta)] = c`
⇒ `a - atan^2theta + 2b tantheta = c(1 + tan^2theta)`
⇒ `a - atan^2theta + 2b tantheta - c - ctan^2theta = 0`
⇒ `-(a + c)tan^2theta + 2btantheta + (a - c) = 0`
ज्ञात है कि, α और β इस समीकरण का आधार हैं।
`tanalpha + tanbeta = (-(-2b))/(a + c)`
⇒ `tanalpha + tanbeta = (2b)/(a + c)`
यह सिद्ध है कि `tanα + tanβ = (2b)/(a + c)`
APPEARS IN
RELATED QUESTIONS
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
tan75° - cot75° का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
tan3A - tan2A - tanA बराबर है।
यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos θ/2` का मान बराबर है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`