English

यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = 2ba+c है। संकेत: सर्वसमिकाओंऔरका प्रयोग कीजिए।[संकेत: सर्वसमिकाओंcos2θ=1-tan2θ1+tan2θ और sin2θ= 2tanθ1+tan2θका प्रयोग कीजिए।] - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`

Theorem

Solution

ज्ञात है कि, acos2θ + bsin2θ = c

सिद्ध करें कि, `tanα + tanβ = (2b)/(a+c)`

चूंकी, cos2θ = `(1−tan^2θ)/(1+tan^2θ)` और `sin2θ = (2tan^2θ)/(1+tan^2θ)`

अतः,

`a[(1 -tan^2theta)/(1 + tan^2theta)] + b[(2tantheta)/(1 + tan^2theta)] = c`

⇒ `a - atan^2theta +  2b tantheta = c(1 + tan^2theta)`

⇒ `a - atan^2theta + 2b tantheta - c - ctan^2theta = 0`

⇒ `-(a + c)tan^2theta + 2btantheta + (a - c) = 0`

ज्ञात है कि, α और β इस समीकरण का आधार हैं।

`tanalpha + tanbeta = (-(-2b))/(a + c)`

⇒ `tanalpha + tanbeta = (2b)/(a + c)`

यह सिद्ध है कि `tanα + tanβ = (2b)/(a + c)`

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 54]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 23. | Page 54

RELATED QUESTIONS

मान ज्ञात कीजिए: sin 75°


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.


निम्नलिखित को सिद्ध कीजिए:

sin26x – sin24x = sin 2x sin 10x.


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


निम्नलिखित को सिद्ध कीजिए:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।

[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


tan75° - cot75° का मान है।


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


tan3A - tan2A - tanA बराबर है।


यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos  θ/2` का मान बराबर है -


यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -


यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -


यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।


फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

θ का एक मान, जो समीकरण sin4θ - 2sin2θ - 1 = 0 को संतुष्ट करता है, तथा 0 और 2π के बीच में स्थित होता है।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×