Advertisements
Advertisements
प्रश्न
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
उत्तर
ज्ञात है कि, acos2θ + bsin2θ = c
सिद्ध करें कि, `tanα + tanβ = (2b)/(a+c)`
चूंकी, cos2θ = `(1−tan^2θ)/(1+tan^2θ)` और `sin2θ = (2tan^2θ)/(1+tan^2θ)`
अतः,
`a[(1 -tan^2theta)/(1 + tan^2theta)] + b[(2tantheta)/(1 + tan^2theta)] = c`
⇒ `a - atan^2theta + 2b tantheta = c(1 + tan^2theta)`
⇒ `a - atan^2theta + 2b tantheta - c - ctan^2theta = 0`
⇒ `-(a + c)tan^2theta + 2btantheta + (a - c) = 0`
ज्ञात है कि, α और β इस समीकरण का आधार हैं।
`tanalpha + tanbeta = (-(-2b))/(a + c)`
⇒ `tanalpha + tanbeta = (2b)/(a + c)`
यह सिद्ध है कि `tanα + tanβ = (2b)/(a + c)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan75° - cot75° का मान है।
tan3A - tan2A - tanA बराबर है।
sin(45° + θ) - cos(45° - θ) का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।