मराठी

Tan75° - cot75° का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

tan75° - cot75° का मान है।

पर्याय

  • `2sqrt3`

  • `2 + sqrt3`

  • `2 - sqrt3`

  • 1

MCQ

उत्तर

`underlinebb(2sqrt3)`

स्पष्टीकरण:

विस्तृत करने पर, tan75° - cot75°

∴ tan75° - cot75° = tan75° - cot(90 - 15°)

पूरक कोणो का त्रिकोणमितीय अनुपात का उपयोग करने पर,

∴ tan75° - cot75° = tan75° - tan15°

त्रिकोणमितीय फल के बीच परस्पर संबंध का उपयोग करने पर,

∴ tan75° - cot75° = tan75° - tan15°
⇒ tan75° - cot75° = `(sin75^circ)/(cos75^circ) - (sin15^circ)/(cos15^circ)`

= `(sin 75^circ cos 15^circ - cos75^circ sin15^circ)/(cos75^circ)`

= `(sin(75^circ - 15^circ))/(1/2 xx 2 cos75^circ cos15^circ)`

त्रिकोणमितीय सूत्र जिसमे सर्वसामिकाएँ शामिल है, का उपयोग करने पर

∴ `tan75° − cot75° = (2sin60°)/(cos(75° + 15°) + cos(75° − 15°))`

⇒ `tan75° − cot75° = (2 xx sqrt3/2)/(cos90^circ + cos60^circ)`

= `sqrt(3)/(0 + 1/2)`

= `2sqrt(3)`

सही पर्याय `2sqrt(3)` है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 38. | पृष्ठ ५६

संबंधित प्रश्‍न

सिद्ध कीजिए: `sin^2  pi/6 + cos^2  pi/3 - tan^2  π/4 = - 1/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


निम्नलिखित को सिद्ध कीजिए:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

sin26x – sin24x = sin 2x sin 10x.


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


tan3A - tan2A - tanA बराबर है।


यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।


`sin  pi/10 sin  (13pi)/10` का मान है - 

[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]


यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×