मराठी

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए। cos 2π15cos 4π15cos 8π15cos 16π15=116 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

स्पष्टीकरण:

`cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15 = 1/16` का एलएचएस लेने पर और विस्तृत करने पर।

∴ `cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15`

= cos 24°.cos 48°.cos 96°.cos 192°

= `1/(16  sin 24^circ) [(2 sin 24^circ cos 24^circ)(2 cos 48^circ)(2 cos 96^circ)(2 cos 192^circ)]`

= `1/(16  sin24^circ) [2sin 48^circ . 2 cos48^circ (2 cos 96^circ)(2 cos192^circ)]`

विस्तृत करने पर,

∴ `cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15`

= cos 24°.cos 48°.cos 96°.cos 192°

= `1/(16  sin 24^circ) [(2sin24^circ cos24^circ) (2cos48^circ) (2cos96^circ)(2cos 192^circ)]`

= `1/(16  sin 24^circ) [2 sin 48^circ .2cos 48^circ (2 cos 96^circ)(2 cos 192^circ)]`

विस्तृत करने पर,

= `1/(16  sin 24^circ) 2sin192^circ cos192^circ` [∵ sin(360° + θ) = sinθ]

= `1/(16  sin 24^circ) sin 384^circ`

= `1/(16  sin 24^circ) sin24^circ`

= `1/16`

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 71. | पृष्ठ ६०

संबंधित प्रश्‍न

सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.


निम्नलिखित को सिद्ध कीजिए:

sin26x – sin24x = sin 2x sin 10x.


निम्नलिखित को सिद्ध कीजिए:

cos2 2x – cos2 6x = sin 4x sin 8x


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


निम्नलिखित को सिद्ध कीजिए:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


निम्नलिखित को सिद्ध कीजिए:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos  x/2  cos  (3x)/2`


यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।

[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


sin(45° + θ) - cos(45° - θ) का मान है।


sin50° - sin70° + sin10° का मान बराबर है -

यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

θ का एक मान, जो समीकरण sin4θ - 2sin2θ - 1 = 0 को संतुष्ट करता है, तथा 0 और 2π के बीच में स्थित होता है।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×